K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

1. Giá trị của đa thức Q = x2 -3y + 2z tại x = -3 ; y = 0 ; z = 1 là :

A. 11 B. -7 C. 7 D. 2

2. Bậc của đơn thức (- 2x3) 3x4y là :

A.3 B. 5 C. 7 D. 8

3. Bất đẳng thức trong tam giác có các cạnh lần lượt là a,b,c là:

A. a + b > c B. a – b > c C. a + b ≥ c D. a > b + c

4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:

A. 2 cm ; 9 cm ; 6 cm B. 3cm ; 4 cm ; 5 cm

C. 2 cm ; 4 cm ; 4 cm D. 4 cm ; 5 cm ; 7 cm

5 tháng 1 2018

\(8\left(a^4+b^4\right)+\dfrac{1}{ab}\ge4\left(a^2+b^2\right)^2+\dfrac{1}{ab}\)

\(\ge4\left(\dfrac{\left(a+b\right)^2}{2}\right)^2+\dfrac{4}{\left(a+b\right)^2}=1+4=5\)

23 tháng 5 2020

Bài 1 :

\(a)x=\frac{7}{25}+\left(-\frac{1}{5}\right)\)

    \(x=\frac{2}{25}\)

\(b)x=\frac{5}{11}+\left(\frac{4}{-9}\right)\)

    \(x=\frac{1}{99}\)

Mấy câu kia dễ tự làm :>

3 tháng 4 2019

a)\(\left(a+\frac{b}{2}\right)^2\ge ab\)

\(\Leftrightarrow a^2+ab+\frac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2+ab+\frac{b^2}{4}-ab\ge0\)

\(\Leftrightarrow a^2+\frac{b^2}{4}\ge0\)(luôn lúng)

vậy \(\left(a+\frac{b}{2}^2\right)\ge ab\)

b)\(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}-2\ge0\)

\(\Leftrightarrow\frac{a^2+b^2+2ab}{ab}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab}\ge0\)(luôn đóng vì a,b>0)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b>0

4 tháng 4 2019

b) \(\frac{a}{b}\rightarrow x\).C/m: \(x+\frac{1}{x}\ge2\)

Có \(\left(\sqrt{x}-\sqrt{\frac{1}{x}}\right)^2\ge0\Rightarrow x-2+\frac{1}{x}\ge0\Rightarrow x+\frac{1}{x}\ge2\) (đpcm)

3 tháng 4 2017

c) Ta có a + b > 1 > 0 (1)

Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)

Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)

Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)

Bình phương 2 vế của (4):  \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)

Mặt khác  \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)

Cộng từng vế của (5) và (6):  \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).

3 tháng 4 2017

1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé

\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=3^{64}-1\)

a, Đặt : \(C=1+5+5^2+5^3+...+5^9\)

\(\Leftrightarrow5C=5+5^2+5^3+5^4+...+5^{10}\)

\(\Leftrightarrow5C-C=5^{10}-1\)

\(\Leftrightarrow4C=5^{10}-1\)

\(\Leftrightarrow C=\frac{5^{10}-1}{4}\)

Ta có mẫu là : 

\(\frac{5^9-1}{4}\)

Đặt vào A ta đc 

\(A=\frac{1+5+5^2+5^3+...+5^9}{1+5+5^2+5^3+...+5^8}\)

\(\Leftrightarrow A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}\)

\(\Leftrightarrow\frac{5^{10}-1}{5^9-1}\)

Vậy ...

 Tương tự a , ta có 

\(B=\frac{\frac{3^{10}-1}{2}}{\frac{3^9-1}{2}}\)

\(\Leftrightarrow B=\frac{3^{10}-1}{3^9-1}\)

Vậy ...

\(\Rightarrowđpcm\)