tìm nghiệm của đa thức sau:
x2 + 2x + 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
a.
\(P-\left(5x^4-xyz\right)=xy+2x^4-6xyz+654\)
\(\Rightarrow P=5x^4-xyz+xy+2x^4-6xyz+654\)
\(\Rightarrow P=7x^4-7xyz+xy+654\)
b.
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
-Đặt \(x^3-2x-4=0\)
\(\Leftrightarrow x^3-2x^2+2x^2-4x+2x-4=0\)
\(\Leftrightarrow x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow x-2=0\) hay \(x^2+2x+2=0\)
\(\Leftrightarrow x=2\) hay \(x^2+2x+1+2=0\)
\(\Leftrightarrow x=2\) hay \(\left(x+1\right)^2+1=0\) (vô nghiệm vì \(\left(x+1\right)^2+1\ge1\forall x\))
-Vậy nghiệm của đa thức \(x^3-2x-4\) là \(x=2\)
\(\Leftrightarrow2x^3\left(x-2\right)=0\)
=>x=0 hoặc x=2
Ez mà :V
\(\left(x-3\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Nghiệm của đa thức là giá trị của biến tại giá trị của đa thức bằng 0 .
Ta có :
x^2-2x+4 = 0
<=> (x - 4)^2 = 0
<=> x - 16 = 0
<=> x = 16
Vậy nghiệm của đa thức là 16 .
\(x^2+2x+4=0\)
\(\Rightarrow x\left(x+2\right)=-4=\left(-2\right).2\)
\(\Rightarrow x=-2\)