1/3+2/3^2+3/3^2+4/3^4+.....+2012/3^2012
CMR Nó<3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2012}{3^{2012}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{2012}{3^{2011}}\)
\(\Rightarrow3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{2012}{3^{2011}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2012}{3^{2012}}\right)\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2011}}-\frac{2012}{3^{2012}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2010}}-\frac{2012}{3^{2011}}\)
\(\Rightarrow6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2010}}-\frac{2012}{3^{2011}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2011}}-\frac{2012}{3^{2012}}\right)\)
\(\Rightarrow4A=3-\frac{2012}{3^{2011}}\)
\(\Rightarrow A=\frac{3-\frac{2012}{3^{2011}}}{4}=\frac{3}{4}-\frac{\frac{2012}{3^{2011}}}{4}=\frac{3}{4}-\frac{2012}{3^{2011}.4}\)
\(\Rightarrow A< \frac{3}{4}\)
Giải:
(1+1/2!)+(1+2/3!)+(1+3/4!)+....+(1+2011/2012!)=2011+(1/2!+2/3!+3/4!+...+2011/2012!)
=2011+(\(\frac{1}{2!}\)+\(\frac{3-1}{3!}\)+\(\frac{4-1}{4!}\)+...+\(\frac{2012-1}{2012!}\))= 2011 +(\(\frac{1}{2!}\)+\(\frac{1}{2!}\)-\(\frac{1}{3!}\)+\(\frac{1}{3!}\)-\(\frac{1}{4!}\)+...+\(\frac{1}{2011!}\)-\(\frac{1}{2012!}\))
= 2011+(1-\(\frac{1}{2012!}\))=2012 - \(\frac{1}{2012!}\)<2012 (đpcm)
\(A=\frac{2!+\sqrt{3}}{2!}+\frac{3!+\sqrt{4}}{3!}+\frac{4!+\sqrt{5}}{4!}+....+\frac{2012!+\sqrt{2013}}{2012!}\)
\(=\frac{2!}{2!}+\frac{\sqrt{3}}{2!}+\frac{3!}{3!}+\frac{\sqrt{4}}{3!}+.....+\frac{2012!}{2012!}+\frac{\sqrt{2013}}{2012!}\)
\(=2012+\left(\frac{\sqrt{3}}{2!}+\frac{\sqrt{4}}{3!}+....+\frac{\sqrt{2011}}{2012!}\right)\)
Mà \(\frac{\sqrt{3}}{2!}+\frac{\sqrt{4}}{3!}+...+\frac{\sqrt{2013}}{2012!}>0\)
\(\Rightarrow A>2012+0=2012\)
Đề sai nên t sửa lại r nhé