K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

đáp án ;9841/19683

24 tháng 3 2022

Ta có: \(\dfrac{1}{4}=\dfrac{10}{40}=\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}+\dfrac{1}{40}\)

Mà \(\dfrac{1}{31}>\dfrac{1}{40}\)

\(\dfrac{1}{32}>\dfrac{1}{40}\)

\(\dfrac{1}{33}>\dfrac{1}{40}\)

\(\dfrac{1}{34}>\dfrac{1}{40}\)

\(\dfrac{1}{35}>\dfrac{1}{40}\)

\(\dfrac{1}{36}>\dfrac{1}{40}\)

\(\dfrac{1}{37}>\dfrac{1}{40}\)

\(\dfrac{1}{38}>\dfrac{1}{40}\)

\(\dfrac{1}{39}>\dfrac{1}{40}\)

\(\Rightarrow\) \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{39}+\dfrac{1}{40}>\dfrac{10}{40}=\dfrac{1}{4}\)

Vậy \(S>\dfrac{1}{4}\)

30 tháng 3 2022

tham khảo:

30 tháng 3 2022

99/100

17 tháng 12 2021

Các bạn giúp mình nhé

18 tháng 12 2021

\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)

19 tháng 12 2021

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

23 tháng 12 2021

\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)

\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)

\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)

\(S=4\left(3^2+3^4+3^6+3^8\right)\)

\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)

TH
Thầy Hùng Olm
Manager VIP
22 tháng 12 2022

\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)

\(S=4x\left(1+3^2+...+3^8\right)\)

Vì 4 chia hết cho 4 nên S chia hết cho 4

22 tháng 5 2016

đề bài sai

22 tháng 5 2016

Cách đơn giản nhất và lố nhất : 

Cộng tất cả vào rùi tìm S = bao nhiêu 

Rồi so sánh thôi , đã chứng tỏ

Đặt \(S = \frac{1}{31} + \frac{1}{32} + \frac{1}{33} + . . . + \frac{1}{59} + \frac{1}{60}\)

S có 30 số hạng.Nhóm thành ba nhóm, mỗi nhóm có 10 số hạng

\(S = \left(\right. \frac{1}{31} + \frac{1}{32} + . . . + \frac{1}{40} \left.\right) + \left(\right. \frac{1}{41} + \frac{1}{42} + \frac{1}{43} + . . . + \frac{1}{50} \left.\right) + \left(\right. \frac{1}{51} + \frac{1}{52} + . . . + \frac{1}{60} \left.\right)\)

\(S < \left(\right. \frac{1}{30} + \frac{1}{30} + . . . + \frac{1}{30} \left.\right) + \left(\right. \frac{1}{40} + \frac{1}{40} + . . . + \frac{1}{40} \left.\right) + \left(\right. \frac{1}{50} + \frac{1}{50} + . . . + \frac{1}{50} \left.\right)\)

\(S < \frac{10}{30} + \frac{10}{40} + \frac{10}{50}\)

\(S < \frac{47}{60} < \frac{50}{60} = \frac{5}{6}\)(1)

\(S > \left(\right. \frac{1}{40} + \frac{1}{40} + . . . + \frac{1}{40} \left.\right) + \left(\right. \frac{1}{50} + \frac{1}{50} + \frac{1}{50} + . . . + \frac{1}{50} \left.\right) + \left(\right. \frac{1}{60} + \frac{1}{60} + . . . + \frac{1}{60} \left.\right)\)

\(S > \frac{10}{40} + \frac{10}{50} + \frac{10}{60}\)

\(S > \frac{37}{60} > \frac{35}{60} \left(\right. 2 \left.\right)\)

Từ (1) và (2) => \(\frac{7}{12} < S < \frac{5}{6}\)

hay \(\frac{7}{12} < \frac{1}{31} + \frac{1}{32} + \frac{1}{33} + . . . + \frac{1}{59} + \frac{1}{60} < \frac{5}{6}\)

19 tháng 4 2022

\(\dfrac{2}{30}\)

19 tháng 4 2022

`(1 xx 2 xx 3 xx 4)/(3 xx 4 xx 5 xx 6)`

`= (1 xx 2)/(5 xx 6)`

`= 2/12`

`= 1/6`