tìm n thuộc z để n+5/n+2 ( n khác -2) là một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{n+2}{n-5}\)= \(\frac{n-5+7}{n-5}\)= \(1+\frac{7}{n-5}\)
Để \(1+\frac{7}{n-5}\)là số nguyên \(\Leftrightarrow\frac{7}{n-5}\)là số nguyên.
=> n - 5 \(\in\)Ư(7) = {-7; -1; 1; 7}
=> n \(\in\){-2; 4; 6; 12}
Vậy n \(\in\){-2; 4; 6; 12}
~~~
#Sunrise
a, để A là phân số <=> n+6 khác 0 <=> n khác -6
b, A=n-2/n+6 =(n+6-8)/(n+6)=1- 8/(n+6)
<=> n+6 thuộc Ư(8)={-8;-4;-2;-1;1;2;4;8}
<=> n={-14;10;-8;-7;-5;-4;-2;2}
n - 1 là ước của 19 và đồng thời n là bội của 9
do n - 1 là ước của 19 nên suy ra n - 1 = 1 => n = 2
n - 1 = - 1 = > n = 0
n - 1 = 19 => n = 20
n - 1 = -19 => n = -18
trong 4 giá trị của n chỉ có n = 0 và n = -18 là bội của 9
=> n = 0 or n = -19
tích nha
=\(\frac{n+2+3}{n+2}\)
= \(1+\frac{3}{n+2}\)
Để n\(\in\)Z thì 3\(⋮\)n-2 hay n-2 \(\in\)Ư(3)={ 1, -1, 3, -3}
Ta có bảng sau:
| |||||||||||
Vậy n\(\in\){1, -1, 3, 5} thì n là một số nguyên
ta có
\(\frac{17}{n-1}\times\frac{n}{8}\text{ là số nguyên thì }\)\(\frac{\Rightarrow17n}{n-1}\text{ là số nguyên}\)
Hay \(17+\frac{17}{n-1}\text{ là số nguyên hay}\)
\(n-1\in\left\{\pm1,\pm17\right\}\Leftrightarrow n\in\left\{-16,0,2,18\right\}\)
thay lại ta có \(n=-16\) là giá trị duy nhất thỏa mãn.
Để n+5 /n+2 là số nguyên
=> 3 chia hết n+2
=> n+2 \(\in\) Ư(3)={-1;1;-3;3}
Ta có:
để n+5/n+2 thuộc Z
=>n+5 chia hết n+2
<=>(n+2)+3 chia hết n+2
=>3 chia hết n+2
=>n+2\(\in\){1,-1,3,-3}
=>n\(\in\){-1,-3,1,-5}