5/1x3 + 5/3x5 + 5/5x 7 +...+5/97x99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{97\cdot99}=\frac{5}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\right]\)
\(=\frac{5}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=\frac{5}{2}\left[1-\frac{1}{99}\right]\)
\(=\frac{5}{2}\cdot\frac{98}{99}=\frac{245}{99}\)
\(=\frac{5}{2}\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{97\times99}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=\frac{5}{2}\left(1-\frac{1}{99}\right)\)
\(=\frac{5}{2}\times\frac{98}{99}\)
\(=\frac{245}{99}\)
\(a,x-7\frac{5}{8}=1\frac{1}{4}\)
=> \(x-\frac{61}{8}=\frac{5}{4}\)
=> \(x=\frac{5}{4}+\frac{61}{8}\)
=> \(x=\frac{10}{8}+\frac{61}{8}=\frac{71}{8}=8\frac{7}{8}\)
\(b,x+7\frac{5}{8}=9\frac{1}{4}\)
=> \(x+\frac{43}{5}=\frac{37}{4}\)
=> \(x=\frac{37}{4}-\frac{43}{5}=\frac{13}{20}\)
\(c,\left[x-7\frac{5}{8}\right]:\frac{1}{2}=3\)
=> \(\left[x-\frac{61}{8}\right]=3\cdot\frac{1}{2}\)
=> \(\left[x-\frac{61}{8}\right]=\frac{3}{2}\)
=> \(x-\frac{61}{8}=\frac{3}{2}\)
=> \(x=\frac{3}{2}+\frac{61}{8}=\frac{12}{8}+\frac{61}{8}=\frac{73}{8}=9\frac{1}{8}\)
d, \(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+\frac{x}{5\cdot7}+...+\frac{x}{97\cdot99}=99\)
=> \(\frac{x}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right]=99\)
=> \(\frac{x}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=99\)
=> \(\frac{x}{2}\left[1-\frac{1}{99}\right]=99\)
=> \(\frac{x}{2}\cdot\frac{98}{99}=99\)
=> \(\frac{98x}{198}=99\)
=> 98x = 99 . 198
=> 98x = 19602
=> x = 19602 : 98 = 9801/49
a) \(x-7\frac{5}{8}=1\frac{1}{4}\)
=> \(x=\frac{5}{4}+\frac{61}{8}\)
=> \(x=\frac{71}{8}\)
b) \(x+7\frac{5}{8}=9\frac{1}{4}\)
=> \(x=\frac{37}{4}-\frac{61}{8}\)
=> \(x=\frac{13}{8}\)
c) \(\left(x-7\frac{5}{8}\right):\frac{1}{2}=3\)
=> \(x-\frac{61}{8}=3.\frac{1}{2}\)
=> \(x-\frac{61}{8}=\frac{3}{2}\)
=> \(x=\frac{3}{2}+\frac{61}{8}\)
=> \(x=\frac{73}{8}\)
d) \(\frac{x}{1.3}+\frac{x}{3.5}+...+\frac{x}{97.99}=99\)
=> \(x.\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)=99\)
=> \(\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)=99\)
=> \(x\left(1-\frac{1}{99}\right)=99:\frac{1}{2}\)
=> \(x.\frac{98}{99}=198\)
=> \(x=198:\frac{98}{99}=\frac{9801}{49}\)
Đặt biểu thức = A
6A = 1x3x6 + 3x5x6+....+ 97x99x6
= 1x3x(1+5) + 3x5x(7-1) + 5x7x(9-3) +.....+ 97x99x(101-95)
= 1x3+1x3x5+3x5x7-1x3x5+5x7x9-3x5x7+.....+97x99x101-95x97x99
= 1x3+97x99x101
= 969906
=> A = 161651
k mk nha
\(\frac{1}{1x3}+\frac{1}{3x5}+....+\frac{1}{97x99}\)=S
\(2S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+...+\frac{99-97}{97x99}\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}=1-\frac{1}{99}=\frac{98}{99}\)
\(S=\frac{2S}{2}=\frac{49}{99}\)
\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+..+\dfrac{1}{97.99}+\dfrac{1}{98.100}-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left[\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{99.100}\right)\right]-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..+\dfrac{1}{98}-\dfrac{1}{100}\right]-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left[1-\dfrac{1}{99}+\dfrac{1}{2}-\dfrac{1}{100}\right]-\dfrac{49}{99}\)
\(=\dfrac{1}{2}\left[\dfrac{98}{99}+\dfrac{49}{100}\right]-\dfrac{49}{99}=\dfrac{14651}{19800}-\dfrac{49}{99}=\dfrac{49}{200}\)
\(\dfrac{1}{1x3}+\dfrac{1}{2x4}+...+\dfrac{1}{98x100}+\dfrac{1}{97x99}-\dfrac{49}{99}=1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{100}-\dfrac{49}{99}=1-\dfrac{1}{100}-\dfrac{49}{99}\)
=\(\dfrac{4901}{9900}\)