Bài 19 : Chứng minh rằng :
B = 1/51 + 1/52 + 1/53 +.......+ 1/99 + 1/100 >1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{2}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{50}.50=1\)
Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)
Kết luận: \(\frac{1}{2}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)
\(\frac{1}{51}<\frac{1}{50},\frac{1}{52}<\frac{1}{50};...;\frac{1}{100}<\frac{1}{50}\)
-->\(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{100}<50.\frac{1}{50}\)( tu 51 den 100 co 50 so hang)
-->\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)(1)
ta co
\(\frac{1}{100}<\frac{1}{51}\)
\(\frac{1}{100}<\frac{1}{52}\)
...
\(\frac{1}{100}<\frac{1}{99}\)
\(\frac{1}{100}=\frac{1}{100}\)
---> \(50.\frac{1}{100}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
-->\(\frac{1}{2}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\) (2_)
tu (1) va (2)==> dpcm
\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)(50 số 1/100)
\(\RightarrowĐPCM\)