Anh( chị) giúp em cm bài toán này với!
a2+b2+c2>=2(ab+bc-ca)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac>=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac>=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)
a2+b2>=2ab
b2+c2>=2bc
c2+a2>=-2ac
Cộng 2 vế với nhau:
a2+b2+c2>= ab+bb-ca
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Đề bài sai, phản ví dụ: \(a=b=0,c=1\)
BĐT này chỉ đúng khi a;b;c là độ dài 3 cạnh của 1 tam giác
Ta thấy: \(\left(a-b+c\right)^2\ge0\) với mọi a, b, c
<=> a2 + b2 + c2 - 2ab - 2bc + 2ac \(\ge\) 0
<=> a2 + b2 + c2 \(\ge\) 2ab + 2bc - 2ac
<=> a2 + b2 + c2 \(\ge\) 2(ab + bc - ac) (ĐPCM)