K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Lời giải:

ĐKXĐ: $x\geq 2$

BPT $\Leftrightarrow x+1< 2x-3+2\sqrt{(x-1)(x-2)}$

$\Leftrightarrow 4-x< 2\sqrt{(x-1)(x-2)}$

$\Rightarrow (4-x)^2< 4(x-1)(x-2)$

$\Leftrightarrow 3x^2-4x-8>0$

$\Leftrightarrow x>\frac{2+2\sqrt{7}}{3}$ hoặc $x< \frac{2-2\sqrt{7}}{3}$

Kết hợp ĐKXĐ: suy ra $x> \frac{2+2\sqrt{7}}{3}$

30 tháng 9 2015

bình phương hai vế ta có

\(\frac{-1}{x-1}<1\Leftrightarrow\frac{-1}{x-1}-1<0\Leftrightarrow\frac{-1-x+1}{x-1}<0\)

\(\frac{-x}{x-1}<0\Rightarrow-xvàx-1tráidấuvớinhaumà-x<0\Rightarrow x-1>0\)suy ra x>1

nhớ tích cho mình nha bạn

8 tháng 4 2021

ĐK: \(x\ge4;x\le0\)

TH1: \(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\Rightarrow bpt\) đúng

TH2: \(x\ne0;x\ne4\)

Bất phương trình tương đương:

\(\dfrac{x^2-3x+2}{x-3}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{x-3}\ge0\)

Lập bảng xét dấu:

Dựa vào bảng xét dấu, bất phương trình có nghiệm \(x\in\left[1;2\right]\cup\left(3;+\infty\right)\)

Kết luận: Bất phương trình đã cho có tập nghiệm \(x\in\left[1;2\right]\cup\left(3;+\infty\right)\cup\left\{0\right\}\)

22 tháng 6 2019

Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html

8 tháng 5 2017

a) Ta có: \(x^2+\dfrac{1}{x^2+1}=x^2+1+\dfrac{1}{x^2+1}-1\)\(\ge2\sqrt{\left(x^2+1\right).\dfrac{1}{x^2+1}}-1=2-1=1\).
Vì vậy: \(x^2+\dfrac{1}{x^2+1}\ge1\) nên BPT vô nghiệm.

8 tháng 5 2017

b) Áp dụng BĐT Cô-si ta có:
\(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}\ge\)\(2\sqrt{\left(x^2-x+1\right).\dfrac{1}{x^2-x+1}}=2\).
Vì vậy BPT vô nghiệm.