Hãy cho biết kết quả của:
a) a(b-c)+b(c-a)+c(a-b);
b) a(bz-cy)+b(cx-az)+c(ay-bx).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2019\cdot2021=2020^2-1\)
\(B=2020^2\)
Do đó: A<B
\(x\) + 5 ⋮ \(x\) (\(x\) ≠ 0)
5 ⋮ \(x\)
\(x\) \(\in\) Ư(5) = {-5; -1; 1; 5)
Với mọi số thực dương x;y;z ta có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2xy+2yz+2zx\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
Áp dụng:
a.
\(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le\sqrt{3\left(a+2+b+2+c+2\right)}=\sqrt{3\left(21+6\right)}=9\)
b.
\(\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{3\left(a+b+2+b+c+2+c+a+2\right)}\)
\(\Rightarrow\sqrt{a+b+2}+\sqrt{b+c+2}+\sqrt{c+a+2}\le\sqrt{6\left(a+b+c\right)+18}=\sqrt{6.21+18}=12\)
Dấu "=" xảy ra khi \(a=b=c=7\)
a) Ta có:
a(b-c)+b(c-a)+c(a-b)
=ab-ac+bc-ab+ca-bc
=(ab-ab)+(bc-bc)+(ac-ca)
=0.
b) Ta có:
a(bz-cy)+b(cx-az)+c(ay-bx)
=abz-acy+bcx-baz+cay-cbx
=(abz-baz)+(acy-cay)+(bcx-cbx)
=0.
Đ/s=0