A=(-3x^5y^3)^4 B=(2x^2z^4)^5 Tìm x,y,z biết A+B=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A + B = 81x20y12 + 32x10z20
vì 81x20y12 \(\ge\)0 ; 32x10z20 \(\ge\)0
nên A + b = 0 \(\Leftrightarrow\)\(\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\y=z=0\end{cases}}\)
A=(-3x\(^5\)y\(^3\))\(^4\)
B=(2x\(^2\)z\(^4\))\(^5\)
Day moi la de dung de cua cau thieu roi day
A+B=81x\(^{20}\)y\(^{12}\)+32x\(^{10}\)z\(^{20}\)
vi 81x\(^{20}\)y\(^{12}\)>0;32x\(^{10}\)z\(^{20}\)>0
nen A+B=0 <=>x\(^{20}\)y\(^{12}\)=0 =>x=0 ;y va z bat ki
x\(^{10}\)z\(^{20}\)=0 =>y=z=0 ;x bat ki
\(A+B=\left(-3x^5y^3\right)^4+\left(2x^2z^4\right)^5=81x^{20}y^{12}+32x^{10}z^{20}\)
Ta thấy \(81x^{20}y^{12}\ge0;32x^{10}z^{20}\ge0\) => \(81x^{20}y^{12}+32x^{10}z^{20}\ge0\)
Mà A + B = 0 \(\Rightarrow\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)=> x = 0 ; y và z bất kỳ hoặc y = z = 0 ; x bất kỳ
Ta có :
A=\(\left(-3x^5y^3\right)^4\ge0\forall x,y\)
B=\(\left(2x^2z^4\right)^5=\left(2xz^2\right)^{10}\ge0\forall x,z\)
Mà A+B = 0
\(\Rightarrow\left\{{}\begin{matrix}A=0\\B=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x^5y^3\\2xz^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=0\\z=0\end{matrix}\right.\end{matrix}\right.\)
Vậy x =0 ; y = 0 ; z = 0 là các giá trị cần tìm
a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)
b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)
Vì \(2\ne3\ne4\) nên \(x\in\varnothing\)
c)
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)
Với mọi \(x\ge0\) ta có:
\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)
\(\Leftrightarrow9x+90=x-1\)
\(\Leftrightarrow9x=x-89\)
\(\Leftrightarrow-8x=89\)
\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)
Với mọi \(x< 0\) ta có:
\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)
\(\Leftrightarrow-9x-90=x-1\)
\(\Leftrightarrow-9x=x+89\)
\(\Leftrightarrow-10x=89\)
\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)
d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)
Áp dụng t/c dãy tỉ số bằng nhau:
a.
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)
(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)
b.
\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)
c.
\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)
d.
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)