M C B A D E I chứng minh E, I, D thẳng hàng giải giúp mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. Do tứ giác MDBE nội tiếp (cmt) => \(\widehat{MBE}=\widehat{MBC}=\widehat{MDE}=\frac{1}{2}sđ\widebat{MC}\)(1)
Vì MD \(\perp\)AB tại D (gt) => \(\widehat{MDA}=90^o\)
MF \(\perp\)AC tại F (gt) => \(\widehat{MFA}=90^o\)
Xét tứ giác ADMF có: \(\widehat{MDA}+\widehat{MFA}=90^o+90^o=180^o\)=> tứ giác ADMF nội tiếp (dhnb)
=> \(\widehat{MDF}=\widehat{MAF}=\widehat{MAC}=\frac{1}{2}sđ\widebat{MC}\)(2)
Từ (1) và (2) => \(\widehat{MDE}=\widehat{MDF}\)=> D, E, F thẳng hàng (2 góc có cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau)
* Ta có: tứ giác MEFC nội tiếp (cmt) => \(\widehat{EFM}=\widehat{ECM}=\frac{1}{2}sđ\widebat{EM}\)\(\Leftrightarrow\widehat{DFM}=\widehat{BCM}\)(3)
tứ giác MDBE nội tiếp (cmt) => \(\widehat{MDE}=\widehat{MBE}=\frac{1}{2}sđ\widebat{ME}\)\(\Leftrightarrow\widehat{MDF}=\widehat{MBC}\)(4)
Từ (3) và (4) => \(\Delta MDF\)đồng dạng với \(\Delta MBC\)(g.g) => \(\frac{MD}{MB}=\frac{MF}{MC}\Leftrightarrow MB\times MF=MD\times MC\)(đpcm)
c. Nối A với M, B với M
Ta có: \(\widehat{AMB}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(5)
Do tứ giác MEFC nội tiếp => \(\widehat{FME}=\widehat{FCE}=\frac{1}{2}sđ\widebat{EF}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(6)
Từ (5) và (6) => \(\widehat{AMB}=\widehat{FME}\)(7)
lại có: tứ giác ADMF nội tiếp (cmt) => \(\widehat{MAD}=\widehat{MFD}=\frac{1}{2}sđ\widebat{MD}\Leftrightarrow\widehat{MAB}=\widehat{MFE}\)(8)
từ (7) và (8) => \(\Delta ABM\)đồng dạng với \(\Delta FEM\)(g.g) => \(\frac{AB}{FE}=\frac{AM}{FM}\Leftrightarrow\frac{AB}{AM}=\frac{FE}{FM}\Leftrightarrow\frac{2\times AI}{AM}=\frac{2\times FK}{FM}\Leftrightarrow\frac{AI}{AM}=\frac{FK}{FM}\)(9)
Lại có: \(\widehat{MAD}=\widehat{MFD}\)(CMT) => \(\widehat{MAI}=\widehat{MFK}\)(10)
Từ (9) và (10) => \(\Delta MAI\)đồng dạng với \(\Delta MFK\)(c.g.c) => \(\widehat{IMA}=\widehat{KMF}\)(11)
Ta có: \(\widehat{MID}\)là góc ngoài tại đỉnh I của \(\Delta MAI\)=> \(\widehat{MID}=\widehat{MAI}+\widehat{IMA}\)
Tương tự: \(\widehat{MKD}\)là góc ngoài tại đỉnh K của \(\Delta MFK\)=> \(\widehat{MKD}=\widehat{MFK}+\widehat{KMF}\)
Từ (10) và (11) => \(\widehat{MID}=\widehat{MKD}\)=> Tứ giác MDIK là tứ giác nội tiếp (DHNB) => \(\widehat{IDM}+\widehat{IKM}=180^o\)(Hệ quả)
Mà \(\widehat{IDM}=\widehat{ADM}=90^o\)=> \(\widehat{IKM}=90^o\)<=> MK vuông góc với KI (ĐPCM)
a) Xét tam giác BDC và tam giác CEB có:
Góc B = Góc C ( vì AB = AC => tam giác ABC cân tại A )
Góc BDC = Góc CEB ( = 90 độ )
BC : cạnh chung
Do đó : Tam giác BDC = tam giác CEB ( cạnh huyền - góc nhọn )
=> BD = CE ( hai cạnh tương ứng )
b) Xét tam giác
c) Ta có AB = AC(gt)
Tam giác BDC = Tam giác CEB ( cm câu a )
=> AE = AD (2 góc tương ứng)
Mà AB - AE = AC - AD
<=> BE = CD (1)
Mặt khác góc BEI = góc CDI (2)
góc EIB = góc DIC ( đđ )
=> góc EBI = góc DCI (3)
Từ (1),(2) và (3) => Tam giác IBE = tam giác IDC( cạnh góc vuông - góc nhọn kề )
=> IB = IC ( 2 cạnh tương ứng )
=> I nằm trên đường trung trực BC (1)
Ta lại có AB = AC ( gt )
=> A nằm trên đường trung trực của BC (2)
Từ (1) và (2) => Ba điểm A , I , H là ba điểm thẳng hàng ( đpcm )
Tk nhé bạn
a) Tam giác ABM và ACM có AB=AC (gt), BM = CM(gt) và AM chung nên 2 tam giác bằng nhau (c.c.c)
b) Tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao kẻ từ A => AM \(\perp\)BC
c) Tam giác EBC và FCB có
EB = FC
\(\widehat{EBC}=\widehat{FCB}\) (tam giác ABC cân tại A)
BC chung
=> tam giác EBC = tam giác FCB (c.g.c)
d) tam giác EBC = tam giác FCB => \(\widehat{ICB}=\widehat{IBC}\) (2 góc tương ứng)
=> tam giác IBC cân tại I => IB = IC
Xét tam giác AIB và AIC có
AI chung
AB =AC (gt)
IB=IC
=> tam giác AIB = AIC (c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\) mà \(\widehat{BAI}+\widehat{CAI}=\widehat{BAC}\)
=> AI là tia phân giác của \(\widehat{BAC}\) (1)
Tam giác ABC cân tại A có AM là đường trung tuyến => đồng thơi là đường pgiac
=> AM là tia pgiac của \(\widehat{BAC}\) (2)
từ 1 và 2 => A,I,M thẳng hàng
e) Có AB = AC(gt) => AE + EB = AF + FC mà BE = CF => AE = AF => tam giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^o-\widehat{EAF}}{2}=\dfrac{180^o-\widehat{BAC}}{2}\) (3)
Tam giác ABC cân tại A => \(\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{BAC}}{2}\)(4)
Từ 3 + 4 => \(\widehat{AEF}=\widehat{ABC}\) mà 2 góc đồng vị => EF // AB
a. vì AB=AC => tam giác ABC là tam giác cân
Xét tam giác ABC ta có :
AB=AC (gt)
AM cạnh chung
BM=CM (tam giác ABC là tam giác cân)
=> tam giác ABM = tam giác ACM ( c.c.c )
b. ta có : AB=AC ; BM=CM
=> AM vuông góc BC