K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2015

mình biết làm nhưng dài quá bạn tra trên google là đc

10 tháng 7 2017

Giả sử :

\(x\le y\)(1)

=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{y}\)

=> \(\frac{2}{3}\ge\frac{2}{y}\)

=> \(\frac{1}{3}\ge\frac{1}{y}\Rightarrow3\ge y\)(2)

Lại có :

\(\frac{1}{x}+\frac{1}{y}\le\frac{2}{x}\)

=> \(\frac{2}{3}\le\frac{2}{x}\Rightarrow3\le x\)(3)

Từ (1) , (2) , (3) 

=> \(3\le x\le y\le3\)

=> x = y = 3

26 tháng 10 2019

\(x^3+7x=y^3+7y\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(7x-7y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+7\right)=0\)

\(TH1:x-y=0\Rightarrow x=y\)

\(TH2:x^2+y^2+xy+7=0\)(pt này không có nghiêm nguyên)

Vậy x = y với x,y nguyên

26 tháng 10 2019

\(\Leftrightarrow x^3-y^3+7x-7y=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+7\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2+7=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+7=0\end{cases}}\)

Dễ thấy rằng vế dưới là vô nghiệm

\(\Rightarrow x=y\)

Vậy \(\forall x,y\in R\)thì \(x=y\)là nghiệm của pt trên