K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Ta có A = \(1+5+5^2+...+5^{2015}\)

=> 5A = \(5+5^2+5^3+...+5^{2016}\)

=> 5A - A =  \(5+5^2+5^3+...+5^{2016}-1-5-5^2-...-5^{2015}\)

=> 4A = \(5^{2016}-1\)

=> A = \(\left(5^{2016}-1\right):4\)

=> A chia hết cho 31

29 tháng 9 2024

.................

 

15 tháng 12 2017

Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :

- Tích các số lẻ có chứa các số 11 ; 17 ; 53

- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53

=> Tổng hai tích chia hết cho 9911.

20 tháng 12 2016

 Ta có A = [ (- 1) + 2 ] + [ (- 2) + 3 ) ] + [ (-3) + 4 ] + ..... + [ (- 2015) + 2016 ]

= 1 + 1 + 1 + ..... + 1 ( có [ ( 2016 - 1 ) + 1 ] : 2 = 1008 chữ số 1 )

= 1x1008 = 1008

Vì 1008 chia hết cho 3 => A chia hết cho 3 ( điều phải chứng minh )

27 tháng 6 2020

a, 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23  ⋮ 23

Vậy 472014 - 472013  ⋮ 23

b, 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11  ⋮ 11

Vậy 542014 + 542015  ⋮ 11

c, 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) =  39 . 4 ⋮ 4

Vậy  273 + 95 ⋮ 4

d, a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5

Vậy a(2a - 3) - 2a(a + 1) ⋮ 5 với mọi a nguyên

18 tháng 9 2020

            Bài làm :

a) 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23  ⋮ 23

=> Điều phải chứng minh

b) 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11  ⋮ 11

=> Điều phải chứng minh

c) 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) =  39 . 4 ⋮ 4

=> Điều phải chứng minh

d) a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5

=> Điều phải chứng minh

8 tháng 10 2015

A=(1+51+52)+(53+54+55)+...+(52013+52014+52015)

A=31+53(1+5+25)+56(1+5+25)+...+52013(1+5+25)

A=31+53.31+56+...+52013.31

A=31(53+56+...+52013)

=>A: hết cho 31

tick mk nha bạn

25 tháng 4 2019

\(C=5^{100}+5^{101}+....+5^{150}\)

\(5C=5^{101}+5^{102}+...+5^{151}\)

\(4C=5^{151}-5^{100}\)

\(C=\frac{5^{151}-5^{100}}{4}\)

25 tháng 4 2019

\(D=1+6+6^2+...+6^{20}\)

\(\Rightarrow6D=6+6^2+6^3+....+6^{21}\)

\(\Rightarrow5D=6^{21}-1\)

\(\Rightarrow5D+1=6^{21}\)

Vì \(6^{21}⋮6\) nên \(5D+1⋮6\)