K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

Ở dưới có đấy bạn

7 tháng 4 2016

ta có:thay x =3 ta được P(2)=3 =>P(\(\sqrt{2013}-1\))=2007

7 tháng 4 2016

Ta có P(2)+2P(2)=9

          3P(2)=9

           P(2)=3

Ta có P(\(\sqrt{2013}\)-1)+2P(2)=2013

          P(\(\sqrt{2013}\)-1)=2013-2P(2)=2013-2.3=2007

30 tháng 5 2016

Đặt \(\sqrt{\text{x}}-\sqrt{y}=a\)\(\sqrt{y}-\sqrt{z}=b\)\(\sqrt{z}-\sqrt{x}=c\)

\(\Rightarrow a+b+c=0\). Ta sẽ chứng minh : \(a^3+b^3+c^3=3abc\)

Ta có : \(a+b+c=0\Rightarrow a=-\left(b+c\right)\Rightarrow a^3=-\left(b+c\right)^3\)

\(\Rightarrow a^3=-\left[b^3+c^3+3bc\left(b+c\right)\right]\Rightarrow a^3+b^3+c^3=-3bc\left(-a\right)=3abc\)

Mặt khác, ta lại có : \(a^3+b^3+c^3=0\left(gt\right)\Rightarrow3abc=0\Rightarrow abc=0\)

\(\Rightarrow a=0\)hoặc \(b=0\)hoặc \(c=0\)

Tu do de dang giai tiep bai toan!

1)Giải hệ phương trình với \(x,y,z\in R\)\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tốa)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn...
Đọc tiếp

1)Giải hệ phương trình với \(x,y,z\in R\)

\(\left\{{}\begin{matrix}x+\sqrt{yz}=1\\y+\sqrt{zx}=1\\z+\sqrt{xy}=1\end{matrix}\right.\)   

2)Cho đa thức \(P\left(x\right)=ax^2+bx+c\) thoả mãn \(\overline{abc}\) là số nguyên tố

a)Xác định \(P\left(x\right)\) biết \(P\left(0\right)=3,P\left(1\right)=4\)

b)Chứng minh \(P\left(x\right)\) vô nghiệm trên \(Z\)

3)Tìm tất cả các hàm \(f\):\(R\rightarrow R\) thoả mãn :

\(f\left(x^2\right)=f\left(x+y\right).f\left(x-y\right)+y^2,\forall x,y\in R\)

4)Cho đường tròn \(\left(I,r\right)\) nội tiếp \(\Delta ABC\).\(M\in\) đoạn \(BC\)\(\left(M\ne B,C\right)\).Gọi \(\left(I_1,r_1\right)\)là đường tròn nội tiếp \(\Delta AMC\).Đường thẳng song song \(BC\) tiếp xúc \(\left(I_1,r_1\right)\) cắt các cạnh \(AB,AC\) tại \(X,Y\).\(AM\) cắt \(XY\) tại \(N\).Gọi \(\left(I_2,r_2\right)\) là đường tròn nội tiếp \(\Delta AXN\).Chứng minh:

a)\(A,I,I_1,I_2\) cùng thuộc 1 đường tròn

b)\(r=r_1+r_2\)

0
8 tháng 4 2017

Bài 1: Áp dụng BĐT AM-GM ta có:

\(1+x\ge2\sqrt{x}\)

\(x+y\ge2\sqrt{xy}\)

\(y+1\ge2\sqrt{y}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)

\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\) 

Đẳng thức xảy ra khi  \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)

Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)

Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên 

\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)

\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)

\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)

\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn

5 tháng 2 2020

Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)

\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)

\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)

\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)

hay \(A=\sqrt{2018}\)

14 tháng 1 2017

Ta có: \(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+8}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow2\left(x-y\right)+10x-6y+8\le2\left(x+y\right)\)

\(\Leftrightarrow2\left(x-y\right)^2+8\left(x-y\right)+8\le0\)

\(\Leftrightarrow2\left(x-y+2\right)^2\le0\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+1=y-1\\x-y+2=0\end{cases}\Leftrightarrow}y=x+2\)

Thế vào P ta được

\(P=x^4+\left(x+2\right)^2-5x-5\left(x+2\right)+2020\)

\(=x^4+2x^2-6x+2014\)

\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

10 tháng 12 2017

Ta có: √x+1+√y−1≤√2(x+y)

⇔√2(x−y)2+10x−6y+8≤√2(x+y)

⇔2(x−y)+10x−6y+8≤2(x+y)

⇔2(x−y)2+8(x−y)+8≤0

⇔2(x−y+2)2≤0

Dấu = xảy ra khi {

x+1=y−1
x−y+2=0

⇔y=x+2

Thế vào P ta được

P=x4+(x+2)2−5x−5(x+2)+2020

=x4+2x2−6x+2014

=(x2−1)2+3(x−1)2+2010≥2010

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

2 tháng 9 2016

Nhân 2 vế của pt đầu với \(x-\sqrt{x^2+3}\) đc:

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)

Tương tự nhân 2 vế của pt đầu với \(y-\sqrt{y^2+3}\) đc:

\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)

Từ (1) và (2) =>2(x+y)=0

=>x+y=0<=>x=-y

<=>x2013=-y2013

<=>x2013+y2013=0

A=x2013+y2013+1=1

NV
25 tháng 10 2021

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

NV
25 tháng 10 2021

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb