tìm x ]
/x - 2/=3
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{x}{2}=\dfrac{1-x}{3}\)
\(\Leftrightarrow3x=2\left(1-x\right)\)
\(\Leftrightarrow3x=2-2x\)
\(\Leftrightarrow5x=2\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy ...
Ta có: \(\dfrac{x}{2}=\dfrac{1-x}{3}\)
\(\Leftrightarrow3x=2\left(1-x\right)\)
\(\Leftrightarrow3x=2-2x\)
\(\Leftrightarrow3x+2x=2\)
\(\Leftrightarrow5x=2\)
hay \(x=\dfrac{2}{5}\)
Vậy: \(x=\dfrac{2}{5}\)
\(\dfrac{9}{7}x+\dfrac{5}{7}x=\dfrac{2}{3}\)
\(\Leftrightarrow x\left(\dfrac{9}{7}+\dfrac{5}{7}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{14}{7}x=\dfrac{2}{3}\)
\(\Leftrightarrow2x=\dfrac{2}{3}\)
\(\Leftrightarrow x=\dfrac{2}{3}:2\)
\(\Leftrightarrow x=\dfrac{2}{3}\times\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{2}{6}\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
\(\Leftrightarrow2.5:x=2+\dfrac{2}{3}-2-\dfrac{1}{5}=\dfrac{7}{15}\)
hay \(x=\dfrac{5}{2}:\dfrac{7}{15}=\dfrac{5}{2}\cdot\dfrac{15}{7}=\dfrac{75}{14}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)
a: A=x^2-2x+1+4
=(x-1)^2+4>=4
Dấu = xảy ra khi x=1
b: =x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
c: =2x+8-x^2-4x
=-x^2-2x+8
=-x^2-2x-1+9
=-(x^2+2x+1)+9
=-(x+1)^2+9<=9
Dấu = xảy ra khi x=-1
d: =x^2-2xy+y^2+4y^2+4y+1+2
=(x-y)^2+(2y+1)^2+2>=2
Dấu = xảy ra khi x=y và 2y+1=0
=>x=y=-1/2
\(\)đặt \(2x^2+y^2+\dfrac{28}{x}+\dfrac{1}{y}=A\)
\(=>A=2x^2+y^2-7x-y+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2x^2-8x+8+y^2-2y+1+x+y-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2\left(x-2\right)^2+\left(y-1\right)^2+\left(x+y\right)-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
áp dụng BDT AM-GM\(=>\dfrac{28}{x}+7x+\dfrac{1}{y}+y\ge2\sqrt{28.7}+2\sqrt{1}=30\)
\(=>A\ge30+3-9=24\)
dấu"=" xảy ra<=>x=2,y=1
a,ĐKXĐ:\(\left\{{}\begin{matrix}x\ne\pm1\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
\(A=\left(\dfrac{2}{x+1}-\dfrac{1}{x-1}+\dfrac{5}{x^2-1}\right):\dfrac{2x+1}{x^2-1}\\ =\left(\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{5}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{2x-2-x-1+5}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\\ =\dfrac{x+2}{2x+1}\)
\(b,A=3\\ \Leftrightarrow\dfrac{x+2}{2x+1}=3\\ \Leftrightarrow6x+3=x+2\\ \Leftrightarrow5x+1=0\\ \Leftrightarrow x=-\dfrac{1}{5}\left(tm\right)\)
\(c,\dfrac{1}{A}=\dfrac{2x+1}{x+2}=\dfrac{2x+4-3}{x+2}=\dfrac{2\left(x+2\right)-3}{x+2}=2-\dfrac{3}{x+2}\)
Để `1/A` là số nguyên thì `3/(x+2)` nguyên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng:
x+2 | -3 | -1 | 1 | 3 |
x | -5 | -3 | -1(ktm) | 1(ktm) |
Vậy \(x\in\left\{-5;-3\right\}\)
|x-2|=3
=> x-2 = 3 hoặc -3
nếu x-2 = 3 thì x= 5
nếu x-2 = -3 thì x= -1
vậy x=-1;5
\(\left|x-2\right|=3\)
\(\Rightarrow x-2=3\) hoặc \(x-2=-3\)
\(\Rightarrow x=5\) hoặc \(x=-1\)