K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2016

<=>\(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\left(dpcm\right)\)

25 tháng 5 2018

Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca

a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²

25 tháng 5 2018

Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn

30 tháng 4 2017

a)(2x2-x-3)2-7(2x2-x-3)+42=0

Đặt 2x2-x-3=t ta được:

t2-7t+42=0

<=>t2-7t+12,25+29,75=0

<=>(t-3,5)2+29,75=0(vô lí)

b)Ta có:(a-b)2\(\ge\)0

<=>a2-2ab+b2\(\ge\)0

<=>a2+b2\(\ge\)2ab(1)

Dấu "=" xảy ra khi và chỉ khi a-b=0<=>a=b

Tương tự ta có:

b2+c2\(\ge\)2bc(2)

c2+a2\(\ge\)2ca(3)

cộng vế với vế 1 , 2 và 3 ta có:

2(a2+b2+c2)\(\ge\)2(ab+bc+ca)(*)

<=>a2+b2+c2\(\ge\)ab+bc+ca

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>a=b=c

Từ (*) =>3(a2+b2+c2)\(\ge\)2(ab+bc+ca)+a2+b2+c2=(a+b+c)2

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>a=b=c

b: Nếu AB>AC thì \(\widehat{B}< \widehat{C}\)

mà \(\widehat{B}+\widehat{C}=90^0\)

nên \(\widehat{C}>45^0\)

mà \(\widehat{HAC}=90^0-\widehat{C}\)

nên \(\widehat{HAC}< 45^0< \widehat{C}\)

hay HC<AH

27 tháng 7 2016

bạn chứng minh tam giác MBC = tam giác MB'A ( cgc) =>BC=AB' (1)

chứng minh tiếp tâm giác NBC= tam giác NAC' ( cgc) => BC= AC' (2)

từ 1và 2 => BC=AB'=AC'

Vì tam giác MBC=tam giác MB'A nên góc MAB= góc MCB=> BC//AB'

vì tâm giác NBC= tam giác NAC' nên góc NAC' = góc NBC => BC// AC'

tam giác NBC' = tam giác NAC( cgc) =>góc NC'B= góc NCA => BC'//AC

14 tháng 2 2016

moi hok lop 6