K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)

4 tháng 10 2017

Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)

Áp dụng bất đẳng thức Canchy Schwarz dạng Engel : 

\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)

Dấu " = " xảy ra khi x=y=z=1.

4 tháng 10 2017

Áp dụng bđt Cauchy Schwarz dạng Engel:

P=\(\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{3^2}{4.3}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1

17 tháng 10 2020

Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)

Dấu bằng xảy ra khi \(x=y=z=2\)

17 tháng 10 2020

Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\)\(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)

Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)

Đẳng thức xảy ra khi x = y = z = 2

8 tháng 6 2016

theo mik hình như  ở vế trái phải là x^3/y^2 chứ