tính tổng A = 1+ 2 + 2^2 + ... + 2^2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+...+2^{2021}\)
\(\Rightarrow2A=2^1+2^2+...+2^{2022}\)
\(\Rightarrow2A-A=2^1+2^2+...+2^{2022}-2^0-2^1-...-2^{2021}=2^{2022}-2^0=2^{2022}-1\)
A = 20 + 21 + ... + 22021
2A = 2(20+21+...+22021)
2A = 21 + 22 + ... + 22022
A = ( 2^1 + 2^2 +...+2^2022 ) - ( 2^0 + 2^1 + ...+2^2021 )
A = ( 2^1 - 2^1 ) + ( 2^2 - 2^2 ) + .... + (2^2021 - 2^2021 ) + 2^2022 - 2^0
A = 0 + 0 +....+0 + 2^2022 - 2^0
A = 2^2022 - 2^0
1/
$A=1+2-3-4+5+6-7-8+....+2017+2018-2019-2020+2021+2022$
$=(1+2-3-4)+(5+6-7-8)+...+(2017+2018-2019-2020)+4043$
$=(-4)+(-4)+(-4)+...+(-4)+4043$
Số lần xuất hiện của -4 là: $[(2020-1):1+1]:4=505$
$A=(-4)\times 505+4043=2023$
a)
\(P=a\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}+\frac{a}{b}=a\sqrt{\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}\)
=\(a\sqrt{\frac{a^2\left(a+1\right)^2+2a\left(a+1\right)+1}{a^2\left(a+1\right)^2}}+\frac{a}{a+1}=a\sqrt{\frac{\left[a\left(a+1\right)+1\right]^2}{\left[a\left(a+1\right)\right]^2}}+\frac{a}{a+1}\)
\(=a.\frac{a\left(a+1\right)+1}{a\left(a+1\right)}+\frac{a}{a+1}=a+\frac{1}{a+1}+\frac{a}{a+1}=a+1\)
Vay P=a+1
phan b,c ap dung phan a la ra
CM bài toán phụ: \(x+y+z=0\)
CM: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) với x,y,z dương
Ta có: \(I=\sqrt{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)
\(=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\cdot\frac{x+y+z}{xyz}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Áp dụng vào ta được: \(Q=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2020}-\frac{1}{2021}\)
\(Q=2021-\frac{1}{2021}=...\)
\(A=1+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow A=2A-A=2+2^3+...+2^{2023}-1-2^2-...-2^{2022}=2-1+2^{2023}-2^2=-3+2^{2023}\)
A = 1 + 22 + 23 + ..... + 22021 + 22022
2A = 2(1 + 22 + 23 + ..... + 22021 + 22022)
2A = 2 + 23 + 24 + ..... + 22022 + 22023
2A - A = (2+23 + 24 + ..... + 22022 + 22023) - (1 + 22 + 23 + .... + 22021 + 22022 )
Thấy sai sai sao í -))
1+2+....+2019=(2019+1).2019:2=2039190
1+3+.......+2021=(2021+1).1011:2=1022121
Bài cuối chưa hiểu
\(A=1+2+2^2+...+2^{2021}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2A-A=2+2^2+2^3+...+2^{2022}-1-2-2^2-2^{2021}\)
\(A=2^{2022}-1\)
ta có ;
\(2A=2+2^2+..+2^{2022}=\left(1+2+2^2+..+2^{2021}\right)+2^{2022}-1\)
\(=A+2^{2022}-1\Rightarrow A=2^{2022}-1\)