cho x,y,z>0 và xyz=1 CMR: \(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có BĐT \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\left(true\right)\)
Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right);z^3+x^3\ge zx\left(z+x\right)\)
Do đó \(VT\le\frac{1}{xy\left(x+y\right)+1}+\frac{1}{yz\left(y+z\right)+1}+\frac{1}{zx\left(z+x+1\right)}\)
\(=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}\) (thay 1 = xyz)
\(=\frac{1}{\left(x+y+z\right)}\left(\frac{x+y+z}{xyz}\right)=\frac{1}{xyz}=1\)(đpcm)
Đẳng thức xảy ra khi x =y = z
P/s :Bài này em làm nhiều trên diễn đàn hoc24 và OLM rồi nhưng cứ nhai lại:D
Với x,y>0 luôn có: \(x^3+y^3\ge xy\left(x+y\right)\) (1)
<=> \(\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)
<=>\(\left(x+y\right)\left(x^2-2xy+y^2\right)\ge0\)
<=> \(\left(x+y\right)\left(x-y\right)^2\ge0\)( luôn đúng)
Dấu "=" xảy ra <=> x=y>0
Từ (1) <=> \(x^3+y^3+1\ge xy\left(x+y\right)+1=xy\left(x+y\right)+xyz=xy\left(x+y+z\right)=\frac{1}{z}\left(x+y+z\right)\)( do xyz=1)
=> \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)
CM tương tự : \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)
\(\frac{1}{z^3+xz+x^3}\le\frac{y}{x+y+z}\)
Cộng vế với vế => \(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)
Dấu "=" xảy ra <=> x=y=z=1
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\); \(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)
\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)
\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)
Cộng vế với vế, ta được:
\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
Cho x,y,z>0; \(x^2+y^2+z^3=\frac{5}{3}\)
CMR: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}\le\frac{1}{xyz}\)
ấy chết,sửa: \(\sqrt{xyz}\) thành \(\sqrt[3]{xyz}\). Em cứ nhầm cái này
Em thử nha, ko chắc đâu;( em thấy nó giống giống lời giải một bài toán nào đó trên tạp chí toán tuổi thơ mà em đã đọc qua lúc trước: chỗ khúc cuối xét \(t_1>t_2\ge3\) ấy ạ. Nên bắt chước lại chỗ đó. tạm thời em chưa nghĩ ra lời nào khác.
Từ đề bài ta có \(1=xyz\le\frac{\left(x+y+z\right)^3}{27}\Rightarrow t=x+y+z\ge3\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{t^2}{t+3}\). Cần chứng minh \(\frac{t^2}{t+3}\ge\frac{3}{2}\left(t\ge3\right)\Leftrightarrow f\left(t\right)=2t^2-3t-9\ge0\) (1)
Xét \(t_1>t_2\ge3\). Khi đó \(f\left(t_1\right)-f\left(t_2\right)=2\left(t_1^2-t_2^2\right)-3\left(t_1-t_2\right)\)
\(=2\left(t_1-t_2\right)\left(t_1+t_2\right)-3\left(t_1-t_2\right)\)
\(=\left(t_1-t_2\right)\left(2t_1+2t_2-3\right)>\left(t_1-t_2\right)\left(2.3+2.3-3\right)=9\left(t_1-t_2\right)>0\) (do \(t_1>t_2\ge3\))
Do đó khi t tăng thì hàm số f(t) tăng, tương tự t giảm thì f(t) giảm với \(t\ge3\). Do đó f(t) đạt giá trị nhỏ nhất khi t = 3.
Khi đó f(t) = 0. Do đó (1) đúng hay ta có đpcm.
Ta đi c/m BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\) (*)
Thật vậy (*) \(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)+y^2\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(luôn đúng)
Áp dụng vào bài toán:
\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+1}=\frac{1}{xy\left(x+y+z\right)}\)(Do xyz=1)
Tương tự: \(\frac{1}{y^3+z^3+1}\le\frac{1}{yz\left(x+y+z\right)};\frac{1}{z^3+x^3+1}\le\frac{1}{zx\left(x+y+z\right)}\)
\(\Rightarrow A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)
Vậy Max A = 1. Dấu "=" xảy ra <=> x=y=z=1.
Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)
Ta có đánh giá sau: \(a^3+b^3\ge ab\left(a+b\right)\)
Thật vậy, biến đổi tương đương:
\(a^3-a^2b-\left(ab^2-b^3\right)\ge0\)
\(\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng:
\(VT=\sum\frac{1}{a^3+b^3+1}=\sum\frac{abc}{a^3+b^3+abc}\le\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=1\Rightarrow\left(x;y;z\right)=1\)
Lời giải:
Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho \((x,y,z)=(\frac{a^2}{bc}, \frac{b^2}{ac}, \frac{c^2}{ab})\)
Khi đó:
\(\text{VT}=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}=\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\)
Xét hiệu \(a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0, \forall a,b>0\)
\(\Rightarrow a^3+b^3\geq ab(a+b)\)
\(\Rightarrow a^3+b^3+abc\geq ab(a+b+c)\Rightarrow \frac{abc}{a^3+b^3+abc}\leq \frac{abc}{ab(a+b+c)}=\frac{c}{a+b+c}\)
Hoàn toàn tương tự:
\(\frac{abc}{b^3+c^3+abc}\leq \frac{a}{a+b+c};\frac{abc}{c^3+a^3+abc}\leq \frac{b}{a+b+c}\)
Cộng theo vế các BĐT vừa thu được :
\(\Rightarrow \text{VT}\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
Dễ dàng chứng minh được với mọi \(x,y>0\) thì ta luôn có:
\(x^3+y^3\ge xy\left(x+y\right)\) \(\left(\text{*}\right)\)
Thật vậy, xét hiệu \(x^3+y^3-xy\left(x+y\right)=x^3-x^2y+-xy^2+y^3=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)
\(x^3+y^3-xy\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\) (vì \(\left(x-y\right)^2\ge0\) với mọi \(x,y\) và \(x+y>0\))
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x-y=0\) \(\Leftrightarrow\) \(x=y\)
Vậy, bất đẳng thức \(\left(\text{*}\right)\) luôn đúng với mọi \(x,y>0\)
Do đó, từ \(\left(\text{*}\right)\) ta suy ra:
\(x^3+y^3+xyz\ge xy\left(x+y\right)+xyz\) (do \(x,y,z>0\))
\(\Leftrightarrow\) \(x^3+y^3+xyz\ge xy\left(x+y+z\right)\)
\(\Leftrightarrow\) \(x^3+y^3+1\ge xy\left(x+y+z\right)\) (do \(xyz=1\))
Khi đó, vì hai vế của bđt trên cùng dấu nên ta lấy nghịch đảo hai vế và đổi chiều bất đẳng thức, tức là:
\(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\) \(\left(1\right)\)
\(\Leftrightarrow\) \(\frac{1}{x^3+y^3+1}\le\frac{xyz}{xy\left(x+y+z\right)}\) (do \(xyz=1\))
\(\Leftrightarrow\) \(\frac{1}{x^3+y^3+1}\le\frac{z}{x+y+z}\)
Hoàn toàn tương tự với vòng hoán vị \(x\) \(\rightarrow\) \(y\) \(\rightarrow\) \(z\), ta cũng chứng minh được:
\(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\) \(\left(2\right)\) và \(\frac{1}{z^3+x^3+1}\le\frac{y}{x+y+z}\) \(\left(3\right)\)
Cộng từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(x=y=z=1\)