K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

\(\frac{x+2}{x+1}-\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\left(x\ne-1,x\ne2\right)\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{x^2-x-2}+\frac{x^2-x-2}{x^2-x-2}\)

\(\Leftrightarrow\frac{x^2-4}{x^2-2x+x-2}+\frac{3\left(x+1\right)}{x^2-2x+x-2}=\frac{3}{x^2-x-2}+\frac{x^2-x-2}{x^2-x-2}\)

\(\Leftrightarrow\frac{x^2-4}{x^2-x-2}+\frac{3x+3}{x^2-x-2}=\frac{3}{x^2-x-2}+\frac{x^2-x-2}{x^2-x-2}\)

\(\Rightarrow x^2-4+3x+3=3+x^2-x-2\)

\(\Leftrightarrow x^2-4+3x+3-3-x^2+x+2=0\)

\(\Leftrightarrow4x-2=0\)

\(\Leftrightarrow4x=2\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)(tmđk)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

7 tháng 3 2021

\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)ĐK : \(x\ne-1;2\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x+2\right)+3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3+\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow x^2-4+3x-3=3+x^2-x-2\)

\(\Leftrightarrow x^2+3x-7=1+x^2-x\)

\(\Leftrightarrow2x-8=0\Leftrightarrow x=4\)( tmđk )

Vậy tập nghiệm phương trình là  S = { 4 }

9 tháng 3 2019

a,<=>\(\frac{20\left(1-2x\right)+6x}{12}\)=\(\frac{9\left(x-5\right)-24}{12}\)

=> 20-40x+6x = 9x-45-24

<=> -40x+6x-9x = -20-45-24

<=> -43x = -89

<=> x = \(\frac{89}{43}\)

c,ĐKXĐ :x\(\ne\pm1\)

<=>\(\frac{3\left(x+1\right)}{x^2+1}\) = -\(\frac{3x+2}{x^2+1}\) - \(\frac{4\left(x-1\right)}{x^2+1}\)

=> 3x+1 = -3x-2-4x+4

<=>3x+3x+4x = -1-2+4

<=> 10x = 1

<=> x =\(\frac{1}{10}\)(TMĐK)

12 tháng 2 2019

\(\Leftrightarrow\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+....+1\right)=0\)

\(\Leftrightarrow x-2013=0\)(because 1/2012 +1/2011+...+1 luôn lớn hơn 0

\(\Leftrightarrow x=2013\)

Vậy ........

26 tháng 3 2020

giúp mik vs

26 tháng 3 2020

a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)

<=> \(9-6x>10-5x\)

<=> 9 - 10 > -5x + 6x

<=> x < -1

Vậy nghiệm của bất phương trình là x < -1

b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)

<=> \(x-1-2x+2\le3x\)

<=> \(-x+1\le3x\)

<=> \(1\le2x\)

<=> x \(\ge\frac{1}{2}\)

Vậy nghiệm của bất phương trình là x > = 1/2

c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)

<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)

<=> 2x + 1 > 2x - 13

<=> 1 > -13 (luôn đúng)

Vậy nghiệm của bất phương trình luôn đúng với mọi x 

24 tháng 3 2020

\(\frac{1}{x^2+3}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{1}{2}\left(27-\frac{1}{x+9}\right)\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}=27-\frac{1}{x+9}\)

Mà 

\(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\)

\(=\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)

\(=\frac{1}{x}-\frac{1}{x+9}\)

\(\Rightarrow\frac{1}{x}=27\Rightarrow x=\frac{1}{27}\)

21 tháng 4 2020

Bài 1:

1, \(\frac{2x-5}{x+5}=3\) (ĐKXĐ: x \(\ne\) -5)

\(\Leftrightarrow\) \(\frac{2x-5}{x+5}=\frac{3\left(x+5\right)}{x+5}\)

\(\Rightarrow\) 2x - 5 = 3(x + 5)

\(\Leftrightarrow\) 2x - 5 = 3x + 15

\(\Leftrightarrow\) 2x - 3x = 15 + 5

\(\Leftrightarrow\) -x = 20

\(\Leftrightarrow\) x = -20 (TMĐKXĐ)

Vậy S = {-20}

2, \(\frac{4}{x+1}=\frac{3}{x-2}\) (ĐKXĐ: x \(\ne\) -1; x \(\ne\) 2)

\(\Leftrightarrow\) \(\frac{4\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow\) 4(x - 2) = 3(x + 1)

\(\Leftrightarrow\) 4x - 8 = 3x + 3

\(\Leftrightarrow\) 4x - 3x = 3 + 8

\(\Leftrightarrow\) x = 11 (TMĐKXĐ)

Vậy S = {11}

3, \(\frac{5}{2x-3}=\frac{1}{x-4}\) (ĐKXĐ: x \(\ne\) \(\frac{3}{2}\); x \(\ne\) 4)

\(\Leftrightarrow\) \(\frac{5\left(x-4\right)}{\left(2x-3\right)\left(x-4\right)}=\frac{2x-3}{\left(2x-3\right)\left(x-4\right)}\)

\(\Rightarrow\) 5(x - 4) = 2x - 3

\(\Leftrightarrow\) 5x - 20 = 2x - 3

\(\Leftrightarrow\) 5x - 2x = -3 + 20

\(\Leftrightarrow\) 3x = 17

\(\Leftrightarrow\) x = \(\frac{17}{3}\) (TMĐKXĐ)

Vậy S = {\(\frac{17}{3}\)}

Bài 2:

1, \(\frac{1}{x-1}+\frac{2}{x+1}=\frac{5x-3}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)

\(\Leftrightarrow\) \(\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{5x-3}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow\) x + 1 + 2(x - 1) = 5x - 3

\(\Leftrightarrow\) x + 1 + 2x - 2 = 5x - 3

\(\Leftrightarrow\) 3x - 1 = 5x - 3

\(\Leftrightarrow\) 3x - 5x = -3 + 1

\(\Leftrightarrow\) -2x = -2

\(\Leftrightarrow\) x = 1 (KTM)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

2, \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\) (ĐKXĐ: x \(\ne\) 2; x \(\ne\) 0)

\(\Leftrightarrow\) \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Rightarrow\) x(x + 2) - x + 2 = 2

\(\Leftrightarrow\) x2 + 2x - x + 2 = 2

\(\Leftrightarrow\) x2 + x = 2 - 2

\(\Leftrightarrow\) x2 + x = 0

\(\Leftrightarrow\) x(x + 1) = 0

\(\Leftrightarrow\) x = 0 hoặc x + 1 = 0

\(\Leftrightarrow\) x = 0 và x = -1

Ta có: x = 0 KTM đkxđ

\(\Rightarrow\) x = -1

Vậy S = {-1}

3, \(\frac{5}{x-3}-\frac{3}{x+3}=\frac{3x}{x^2-9}\) (ĐKXĐ: x \(\ne\) \(\pm\) 3)

\(\Leftrightarrow\) \(\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow\) 5(x + 3) - 3(x - 3) = 3x

\(\Leftrightarrow\) 5x + 15 - 3x + 9 = 3x

\(\Leftrightarrow\) 2x + 24 = 3x

\(\Leftrightarrow\) 2x - 3x = 24

\(\Leftrightarrow\) -x = 24

\(\Leftrightarrow\) x = -24 (TMĐKXĐ)

Vậy S = {-24}

Chúc bn học tốt!!

Mình tính mãi vẫn có chỗ sai, mong bạn thông cảm!!

22 tháng 4 2020

Mình bt mình sai đâu r Garuda

câu 3 bài 3 cuối có cái đoạn 2x + 24 = 3x

\(\Leftrightarrow\) 2x - 3x = -24 (đoạn kia mình ghi là 24 nên quên không đổi dấu)

\(\Leftrightarrow\) -x = -24

\(\Leftrightarrow\) x = 24

Vậy S = {24}

(mình sửa lại rồi nha, chắc hết chỗ sai rồi)

NV
3 tháng 4 2019

Bài 1:

a/ \(x\ne1;2\)

\(\frac{x-2}{\left(x-1\right)\left(x-2\right)}-\frac{7\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}=0\)

\(\Leftrightarrow x-2-7x+7+1=0\)

\(\Leftrightarrow-6x+6=0\)

\(\Rightarrow x=1\) (loại)

Vậy pt vô nghiệm

b/ \(x\ne\frac{3}{2}\)

\(\frac{2x+3}{2x-3}-\frac{3}{2\left(2x-3\right)}-\frac{2}{5}=0\)

\(\Leftrightarrow\frac{10\left(2x+3\right)}{10\left(2x-3\right)}-\frac{15}{10\left(2x-3\right)}-\frac{4\left(2x-3\right)}{10\left(2x-3\right)}=0\)

\(\Leftrightarrow20x+30-15-8x+12=0\)

\(\Leftrightarrow12x+27=0\)

\(\Rightarrow x=-\frac{9}{4}\)

c/ \(x\ne\pm1\)

\(\frac{x+1}{x-1}-\frac{4}{x+1}+\frac{3-x^2}{x^2-1}=0\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}+\frac{3-x^2}{x^2-1}=0\)

\(\Leftrightarrow x^2+2x+1-4x+4+3-x^2=0\)

\(\Leftrightarrow-2x+8=0\)

\(\Rightarrow x=4\)

NV
3 tháng 4 2019

Bài 1:

d/\(x\ne\pm3\)

\(\frac{x-1}{x+3}-\frac{x}{x-3}+\frac{7x-3}{x^2-9}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}-\frac{x\left(x+3\right)}{x^2-9}+\frac{7x-3}{x^2-9}=0\)

\(\Leftrightarrow x^2-4x+3-x^2-3x+7x-3=0\)

\(\Rightarrow0=0\)

Vậy pt có vô số nghiệm \(x\ne\pm3\)

e/ \(x\ne\pm1\)

\(\frac{1}{x+1}+\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{x^2-1}=0\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=0\)

\(\Leftrightarrow x^2-2x+1+2+3x-3=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\left(l\right)\end{matrix}\right.\)

18 tháng 8 2020

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow95x-5=96-6x\)

\(\Leftrightarrow95x+6x=96+5\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) 

\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9=32x+60\)

\(\Leftrightarrow30x-32x=60-9\)

\(\Leftrightarrow-2x=51\)

\(\Leftrightarrow x=-\frac{51}{2}\)

3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)

\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)

\(\Leftrightarrow2x+1=5x+1\)

\(\Leftrightarrow2x=5x\)

\(\Leftrightarrow x=0\)

19 tháng 8 2020

4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)

=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)

=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)

=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)

=> 27 - 9x + 80 - 16x = 12 - 12x - 48

=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0

=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0

=> 143 - 13x = 0

=> 13x = 143

=> x = 11

5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)

=> 6x - 18 + 7x - 35 - 13x - 4 = 0

=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0

=> -57 = 0(vô nghiệm)

6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)

=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)

=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)

=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)

=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)

=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)

=> \(12x+10-10x-3=12x+2\)

=> \(2x+10-3=12x+2\)

=> 2x + 10 - 3 - 12x - 2 = 0

=> (2x - 12x) + (10 - 3 - 2) = 0

=> -10x + 5 = 0

=> -10x = -5

=> x = 1/2

7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)

=> 6x - 3 - 5x + 10 - x - 7 = 0

=> (6x - 5x - x) + (-3 + 10 - 7) = 0

=> 0x + 0 = 0

=> 0x = 0

=> x tùy ý

Bài 8 tự làm nhé