8310:15 ko tắt từng bước
cảm ơn mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11)11) 3x(x-5)2-(x+2)3+2(x-1)3-(2x+1)(4x2-2x+1)=3x(x2-10x+25)-(x3+6x2+12x+8)+2(x3-3x2+3x-1)-(8x3+1)=3x3-30x2+75x-x3-6x2-12x-8+2x3-6x2+6x-2-8x3-1=-4x3-42x2+63x-11
Bài `4`
`1, 2y(x+2)-3x-6`
`=2y(x+2) -(3x+6)`
`=2y(x+2) -3(x+2)`
`=(x+2)(2y-3)`
`2, 3(x+4) -x^2-4x`
`=3(x+4)-(x^2+4x)`
`=3(x+4) -x(x+4)`
`=(x+3)(3-x)`
`3, 2(x+5) -x^2-5x`
`=2(x+5)-(x^2+5x)`
`=2(x+5)-x(x+5)`
`=(x+5)(2-x)`
`4, x^2 +6x-3(x+6)`
`= (x^2+6x) -3(x+6)`
`=x(x+6)-3(x+6)`
`=(x+6)(x-3)`
`5, x(x+y) -5x-5y`
`=x(x+y) -(5x+5y)`
`=x(x+y)-5(x+y)`
`=(x+y)(x-5)`
`6,x(x-y)+2x-2y`
`=x(x-y)+2(x-y)`
`=(x-y)(x+2`
6.
Hàm số xác định khi \(\left\{{}\begin{matrix}2\sqrt{2}sinx-2\ne0\\sin3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinx\ne\dfrac{1}{\sqrt{2}}\\sin3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k2\pi\\x\ne\dfrac{3\pi}{4}+k2\pi\\x\ne\dfrac{k\pi}{3}\end{matrix}\right.\).
10.
Hàm số xác định khi \(\left\{{}\begin{matrix}sin\left(3x+\dfrac{\pi}{6}\right)\ne0\\cos2x\ne0\\sinx+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sin\left(3x+\dfrac{\pi}{6}\right)\ne0\\cos2x\ne0\\sinx+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\).
x/8 : 3/5 = 5/8
x/8 = 5/8 x 3/5
x/8 = 3/8
x : 8 = 3/8
x = 3/8 x 8
x = 3
a: \(Q=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{x-4}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)
\(=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{x-4}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\cdot\left(-1\right)}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
b: Khi x=4-2căn 3 thì \(Q=\dfrac{\sqrt{3}-1+2}{\sqrt{3}-1-3}=\dfrac{\sqrt{3}+1}{\sqrt{3}-4}=\dfrac{-7-5\sqrt{3}}{13}\)
c: Q>1/6
=>Q-1/6>0
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{1}{6}>0\)
=>\(\dfrac{6\sqrt{x}+12-\sqrt{x}+3}{6\left(\sqrt{x}-3\right)}>0\)
=>\(\dfrac{5\sqrt{x}+9}{6\left(\sqrt{x}-3\right)}>0\)
=>căn x-3>0
=>x>9
a) \(-x+80=-220-5x\)
\(\Rightarrow-x+5x=-220-80\)
\(\Rightarrow4x=-300\)
\(\Rightarrow x=-\dfrac{300}{4}\)
\(\Rightarrow x=-75\)
b) \(98+\left(x-12\right)+68=-80-x\)
\(\Rightarrow166+\left(x-12\right)=-80-x\)
\(\Rightarrow166+x-12=-80-x\)
\(\Rightarrow154+x=-80-x\)
\(\Rightarrow154+80=-x-x\)
\(\Rightarrow-2x=234\)
\(\Rightarrow x=-\dfrac{234}{2}\)
\(\Rightarrow x=-117\)
c) \(122+x-78=-55-4x-1\)
\(\Rightarrow44+x=-56-4x\)
\(\Rightarrow x+4x=-56-44\)
\(\Rightarrow5x=-100\)
\(\Rightarrow x=-\dfrac{100}{5}\)
\(\Rightarrow x=-20\)
d) \(663+9x=-x-37\)
\(\Rightarrow9x+x=-37-663\)
\(\Rightarrow10x=-700\)
\(\Rightarrow x=-\dfrac{700}{10}\)
\(\Rightarrow x=-70\)
a) \(\left(2x-4\right)\left(x-2\right)^3=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-4=0\\\left(x-2\right)^3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=4\\x-2-0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=2\end{matrix}\right.\)
\(\Rightarrow x=2\)
b) \(3^{x-1}:81=3^3\)
\(\Rightarrow3^{x-1}:3^4=3^3\)
\(\Rightarrow3^{x-1-4}=3^3\)
\(\Rightarrow3^{x-5}=3^3\)
\(\Rightarrow x-5=3\)
\(\Rightarrow x=8\)
c) \(x^{13}=x\)
\(\Rightarrow x^{13}-x=0\)
\(\Rightarrow x\left(x^{12}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{12}-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{12}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
d) \(\left(x-9\right)^4=\left(x-9\right)^2\)
\(\Rightarrow\left(x-9\right)^2=x-9\)
\(\Rightarrow\left(x-9\right)^2-\left(x-9\right)=0\)
\(\Rightarrow\left(x-9\right)\left(x-9-1\right)=0\)
\(\Rightarrow\left(x-9\right)\left(x-10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-9=0\\x-10=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=9\\x=10\end{matrix}\right.\)
kết quả 8310:15=554 nha
HT
8310:15=554 nha