Cho a + b > 2 CMR: a^4 + b^4 > 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab=\left(a+b\right)^2=2^2=4\)
\(\Leftrightarrow a^2+b^2\ge2\).
Dấu \(=\)khi \(a=b=1\).
b) \(\left(a^2-b^2\right)\ge0\Leftrightarrow a^4+b^4\ge2a^2b^2\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+b^4+2a^2b^2=\left(a^2+b^2\right)^2\ge2^2=4\)
\(\Leftrightarrow a^4+b^4\ge2\)
Dấu \(=\)khi \(a=b=1\).
c) Bạn làm tương tự.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2b^2-c^2}{a^2}\ge4\Leftrightarrow2b^2-c^2\ge4a^2\)
\(\Leftrightarrow b^2\ge\frac{4a^2+c^2}{2}=2a^2+\frac{c^2}{2}\)
\(\Rightarrow a^2+b^2+c^2\ge a^2+c^2+2a^2+\frac{c^2}{2}=3a^2+\frac{3}{2}c^2\) (1)
Mặt khác \(2< a+c\Rightarrow4< \left(a+c\right)^2=\left(\sqrt{\frac{1}{3}}.\sqrt{3}a+\sqrt{\frac{2}{3}}.\sqrt{\frac{3}{2}}c\right)^2\le\left(\frac{1}{3}+\frac{2}{3}\right)\left(3a^2+\frac{3}{2}c^2\right)\)
\(\Rightarrow3a^2+\frac{3}{2}c^2>4\) (2)
(1);(2) \(\Rightarrow a^2+b^2+c^2>4\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)