K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2022

\(\frac{x+y+2005}{x}=\frac{y+z-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)

ADTC dãy tỉ số = nhau ta có: 

\(\frac{x+y+2005}{x}=\frac{y+z-2006}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)\(\frac{x+y+2005+y+z-2006+z+x-1+2}{z+x+y+x+y+z}\)\(\frac{\left(x+x+y+y+z+z\right)+\left(2005-2006-1+2\right)}{\left(x+x\right)+\left(y+y\right)+\left(z+z\right)}\)

\(=\frac{2x+2y+2z}{2x+2y+2z}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x+y+2005}{z}\Leftrightarrow x+y+2005=z\\\frac{y+z-2006}{x}\Leftrightarrow y+z-2006=x\\\frac{z+x-1}{y}\Leftrightarrow z+x-1=y\end{cases}}\)

                   \(\frac{2}{x+y+z}\Leftrightarrow2=x+y+z\)(1)

Biến đổi: \(\hept{\begin{cases}x+y+z+2005=2z\\x+y+z-2006=x\\x+y+z-1=2y\end{cases}}\)

                       \(x+y+z=2\)

Thay (1) vào chỗ biến đổi:

\(\Rightarrow\hept{\begin{cases}2+2005=2x\\2-2006=2x\\2-1=2y\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}2z=2007\\2x=-2004\\x+y+z=2\end{cases}\Leftrightarrow\hept{\begin{cases}z=\frac{2007}{2}\\x=\frac{-2004}{2}=-1002\\y+\frac{2007}{2}-1002=2\end{cases}\Leftrightarrow}\hept{\begin{cases}z=\frac{2007}{2}\\x=-1002\\y=\frac{1}{2}\end{cases}}}\)

             x+y+z=2

(: y bên trên tự tính nhé

=> x=-1002 ; y = 1/2 ; z=2007/2

Vậy ...

12 tháng 8 2020

còn thiếu đk sau nha

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

3 tháng 11 2017

Từ đề bài ta có \(\frac{x+y+y+z+x+z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)      Bn tự trình bày khúc đầu nha

Mà ta có \(\frac{2}{x+y+z}=2\) nên \(x+y+z=1\)

Ta có \(x+y=1-z\)và \(y+z=1-x\)và \(x+z=1-y\)

Thay vào ta có

\(\frac{1-z+2005}{z}=\frac{1-x-2006}{x}=\frac{1-y+1}{y}\)

Ta có \(\frac{z-2004}{z}=\frac{\left(-x\right)+\left(-2005\right)}{x}=\frac{y-2}{y}\)

Suy ra \(\frac{z-2004}{z}=2\Rightarrow z-2004=2z\Rightarrow z-2z=2004\Rightarrow-z=2004\Rightarrow z=-2004\)

Cứ làm thế mà bn tìm ra x,y,z nha 

k cho mik <3

27 tháng 1 2017

D= \(\frac{x^3+y^3+z^3-3xyz}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\) tử = (x+y)3+z3 -3xy(x+y) - 3xyz =(x+y+z)(x2+2xy+y2-xz- yz+z2)-3xy(x+y+z) = (x+y+z)(x2+y2+z2-xy-yz-zx)

do đó D=\(\frac{x+y+z}{2}\)