K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2015

giả sử có tam giác ABC và 2 đường trung tuyến CN và BM cắt nhau tại G, ta chứng minh AB=AC

xét 2 tam giác: NBG và MCG có: 

góc NGB = góc MGC ( vì 2 góc đối đỉnh )        (1)

vì BM, CN là trung tuyến      (gt)

=> BG = 2/3 BM, CG = 2/3 CN

mà BM = CN (gt)    => BG = CG                    (2)

=> NG = 1/3 NC, MG = 1/3 MB

=> NG = MG                                                 (3)

từ (1) , (2), (3)   => tam giác NGB = tam giác MGC (c.g.c)

=> NB = MC  (2 cạnh tương ứng)

=> AB = AC   (vì NB = 1/2 AB, MC = 1/2 AC)

=> tam giác ABC cân tại A ( đpcm)

giả sử có tam giác ABC và 2 đường trung tuyến CN và BM cắt nhau tại G, ta chứng minh AB=AC
xét 2 tam giác: NBG và MCG có: 
góc NGB = góc MGC ( vì 2 góc đối đỉnh )        (1)
vì BM, CN là trung tuyến      (gt)
=> BG = 2/3 BM, CG = 2/3 CN
mà BM = CN (gt)    => BG = CG                    (2)
=> NG = 1/3 NC, MG = 1/3 MB
=> NG = MG                                                 (3)
từ (1) , (2), (3)   => tam giác NGB = tam giác MGC (c.g.c)
=> NB = MC  (2 cạnh tương ứng)
=> AB = AC   (vì NB = 1/2 AB, MC = 1/2 AC)
=> tam giác ABC cân tại A ( đpcm)

28 tháng 11 2017

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.

⇒ G là trọng tâm của tam giác

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

QUẢNG CÁO

Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.

Xét ΔGNB và ΔGMC có :

GN = GM (cmt)

GB = GC (cmt)

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.

Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)

⇒ AB = AC ⇒ ΔABC cân tại A.

31 tháng 3 2016

 Giả sử ∆ABC  có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác  => GB = BM; GC = CN  mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G =>  do đó ∆BCN = ∆CBM vì:  BC là cạnh chung CN = BM (gt)  (cmt) =>   =>  ∆ABC  cân tại A 

31 tháng 3 2016

định lí đảo mà bạn

27 tháng 3 2016

sach toán 7 tập 2 bạn ơi

27 tháng 3 2016

định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau

giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB) 

suy ra  B=C và

AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC

xét tam giác DBC và tam giác ECB có:

EB=DC(cmt)

BC(chung)
B=C(tam giác ABC cân tại A)

suy ra tam giac sDBC=ACB(c.g.c)

suy ra EC=BD

19 tháng 4 2017

Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G

=> G là trọng tâm của tam giác

=> GB = BM; GC = CN

mà BM = CN (giả thiết) nên GB = GC

=> ∆GBC cân tại G => ˆGCB=ˆGBCGCB^=GBC^

do đó ∆BCN = ∆CBM vì:

BC là cạnh chung

CN = BM (gt)

ˆGCB=ˆGBCGCB^=GBC^ (cmt)

=> ˆNBC=ˆMCBNBC^=MCB^ => ∆ABC cân tại A

5 tháng 4 2019

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

Vào link này nhé !!!

Câu hỏi của Võ Văn Phúc Đường - Toán lớp 7 - Học toán với OnlineMath

1 tháng 4 2019

Mik cần hai cách mà bạn

16 tháng 3 2018

Gọi Δ ABC có trung tuyến BM = CN, G là trọng tâm Δ (giao điểm các trung tuyến) 
Ta có : 
GB = 2/3.BM 
GC = 2/3.CN 
Mà BM = CN => GB = GC 
=> Δ BGC cân tại G 
=> ∠ MBC = ∠ NCB 
Xét Δ BMC và Δ CNB : 
BM = CN 
∠ MBC = ∠ NCB 
BC là cạnh chung 
=> Δ BMC = Δ CNB (c - g - c) 
=> ∠ MCB = ∠ NBC 
hay ∠ ACB = ∠ ABC 
=> Δ ABC cân tại A (đpcm)

k nha