số nào là số vô tỉ : -2/6 \(\sqrt{6}\)3,(2) \(\sqrt{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(3,\left( {45} \right) = \frac{{38}}{{11}}\); \( - 45 = \frac{{ - 45}}{1};\,\,0 = \frac{0}{1}\) do đó:
Các số hữu tỉ là: \(\frac{2}{3};\,3,\left( {45} \right);\, - 45;\,0\).
Các số vô tỉ là: \(\sqrt 2 ;\, - \sqrt 3 ;\,\pi \).
Chú ý:
Số thập phân vô hạn tuần hoàn cũng là số hữu tỉ.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ
Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Giả sử \(\sqrt{6}\) là số hữu tỉ
\(\Rightarrow\) \(\sqrt{6}\)viết được dưới dạng phân số tối giản \(\frac{a}{b}\)\(\Rightarrow\) \(\sqrt{6}\)= \(\frac{a}{b}\)\(\Leftrightarrow\) (\(\sqrt{6}\))2 = (\(\frac{a}{b}\))2 \(\Leftrightarrow\) a2 = 6b2 mà (a, b) = 1 \(\Rightarrow\) a2 chia hết cho 6 mà (6, 1) = 1 \(\Rightarrow\) a chia hết cho 6 (1)
Đặt a = 6k \(\Rightarrow\) a2 = 36k2 và a = 6b2 \(\Rightarrow\) 36k2 = 6b2 \(\Leftrightarrow\) b2 = 6k2 mà (6, 1) = 1 \(\Rightarrow\) b2 chia hết cho 6 \(\Rightarrow\) b chia hết cho 6 (2)
Từ (1), (2) và \(\frac{a}{b}\)là phân số tối giản \(\Rightarrow\) Trái với giả thiết (a, b) = 1.
Vậy \(\sqrt{6}\)là số vô tỉ.
b, Giả sử \(\sqrt{1+\sqrt{2}}\)là số hữu tỉ, đặt \(\sqrt{1+\sqrt{2}}\)= a
Ta có: a2 = (\(\sqrt{1+\sqrt{2}}\))2 = 1 + \(\sqrt{2}\)\(\Leftrightarrow\) a2 - 1 = \(\sqrt{2}\)
Ta có: a2 - 1 là số hữu tỉ mà \(\sqrt{2}\)là số vô tỉ \(\Rightarrow\) vô lí
Vậy \(\sqrt{1+\sqrt{2}}\)là số vô tỉ
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.
Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)
Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.
Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2
Kết quả trên chứng tỏ b chia hết cho 3.
Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.
Vậy √3 là số vô tỉ.
b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a
Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.
Điều này vô lí vì √2 là số vô tỉ.
Vậy 5√2 là số vô tỉ.
* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:
3 + √2 = b
Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.
Điều này vô lí vì √2 là số vô tỉ.
Vậy 3 + √2 là số vô tỉ.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử \(\sqrt{6}\) là số hữu tỉ ⇒ \(\sqrt{6}\) = \(\dfrac{m}{n}\) với \(\left\{{}\begin{matrix}m,n\in Z^+\\\left(m,n\right)=1\end{matrix}\right.\) ⇒ 6 = \(\dfrac{m^2}{n^2}\) là số nguyên ⇒ \(m^2\) ⋮ \(n^2\). Mà \(\left(m,n\right)=1\) ⇒ \(n^2\) = 1 ⇒ 6 = \(m^2\) (Vô lý)
Vậy \(\sqrt{6}\) là số vô tỉ
Giả sử \(\sqrt{6}\) là số hữu tỉ thì \(\sqrt{6}=\dfrac{a}{b}\left(a,b\in Z;b\ne0;\left(a,b\right)=1\right)\)
\(\Rightarrow6b^2=a^2\).
Khi đó \(a^2⋮b^2\Rightarrow a⋮b\). Đặt a = bk với k là số nguyên. Khi đó \(6b^2=\left(bk\right)^2\Rightarrow6=k^2\), vô lí vì 6 không là số chính phương.
Vậy ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{5}}.\)\(\sqrt{4+\sqrt{5}}.\sqrt{4-\sqrt{5}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{5}}.\)\(\sqrt{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\)\(\sqrt{4+\sqrt{5}}.\sqrt{16-15}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=5-3=2\)
\(\Rightarrow A\)là số hữu tỉ
-2/6= -1/3=-0,3333.....
=> đó là số vô tỉ