K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)

b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)

11 tháng 11 2016

a) Giải:

Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)

+) \(\frac{x}{3}=31\Rightarrow x=93\)

+) \(\frac{y}{5}=31\Rightarrow y=155\)

+) \(\frac{z}{-2}=31\Rightarrow z=-62\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(93;155;-62\right)\)

b) Giải:

Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

+) \(\frac{x}{21}=2\Rightarrow x=42\)

+) \(\frac{y}{14}=2\Rightarrow y=28\)

+) \(\frac{z}{10}=2\Rightarrow z=20\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(42;28;20\right)\)

3 tháng 12 2023

a)

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)

=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)

b)

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)

=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)

c)

Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)

=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)

d)

Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)

=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)

28 tháng 12 2021

\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{2x-y}{10-2}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:

$3x+5(x+1)=13$
$8x+5=13$

$8x=8$

$x=1$

$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:

$2(y+5)-3y=4$

$-y+10=4$

$-y=-6$

$y=6$

$x=6+5=11$

c. Thay $y=x-2$ vô điều kiện đầu thì:

$-x+5(x-2)=-6$

$4x-10=-6$

$4x=10+(-6)=4$

$x=1$

$y=x-2=1-2=-1$

a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)

28 tháng 11 2021

Ta có

\(\dfrac{3x}{15}=\dfrac{y}{2}\)

áp dụng ... ta đc

\(\dfrac{3x}{15}=\dfrac{y}{2}=\dfrac{3x-y}{15-2}=\dfrac{26}{13}=2\)

x=10

y=4

28 tháng 11 2021

x=10;y=4

30 tháng 10 2016

2x = 5y = 7z\(\Rightarrow\frac{2x}{70}=\frac{5y}{70}=\frac{7z}{70}=\frac{x}{35}=\frac{y}{14}=\frac{z}{10}=\frac{2x+y-z}{70+14-10}=\frac{74}{74}=1\Rightarrow\hept{\begin{cases}x=35\\y=14\\z=10\end{cases}}\)

25 tháng 12 2016

a) 2+ 124 = 5y

2x + 124 là số chẵn nếu x lớn hơn hoặc bằng 1

2x + 124 là số lẻ nếu x = 0

=> x = 0

20 + 124 = 5y

1 + 124 = 5y

125 = 5y

125 : 5 = y

25 = y

=> x = 0 ; y = 25

2 tháng 4 2021

\(2x+5y=26\\ 2x-6=20-5y\\ 2\left(x-3\right)=5\left(4-y\right)\)

\(\Rightarrow2\left(x-3\right)⋮5.\) Mà 2,5 là 2 số nguyên tố cùng nhau

\(\Rightarrow x-3⋮5\Leftrightarrow x-3=5k\left(k\in Z\right)\Leftrightarrow x=5k+3\)

\(\Rightarrow5\left(4-y\right)=2\cdot5k\Leftrightarrow4-y=2k\Leftrightarrow y=4-2k\)

Vậy \(x=5k+3;y=4-2k\left(k\in Z\right)\)

là nghiệm nguyên của phương trình