tìm số nguyên x để : 3x-5 chia hết cho x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
=>3x+15-55 chia hết cho x+5
=> 3(x+5) -55 chia hết cho x+5
vì 3(x+5) chia hết cho x+5 nên 55 cũng chhia hết cho x+5
=> x+5 là ước của 55
=> x+5={1,-1,5,-5,11,-11,55,-55}
xét x+5 =....( đoạn này bạn tự làm nhé)
b) => 3x-12+4 chia hết cho x-4
=> 3(x-4) +4 chia hết cho x-4
vì 3(x-4) chia hết cho x-4 nên 4 chia hết cho x-4
=> x-4 là ước của 4
=> x-4={-1,1,-2,2,-4,4}
xét x-4=.....(bn xét lần lượt nha^^)
a: \(\Leftrightarrow3x+7\in\left\{1;-1;3;-3;11;-11;33;-33\right\}\)
hay \(x=-6\)
b: \(\Leftrightarrow3x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{0;-2\right\}\)
3x - 40 chia hết cho x + 5
3x + 15 - 15 - 40 chia hết cho x + 5
3.(x + 5) - 55 chia hết cho x + 5
=> -55 chia hết cho x + 5
=> x + 5 thuộc Ư(-55) = {1 ; -1 ; 5 ; -5 ; 11; -11; 55; -55}
Ta có bảng sau :
x + 5 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
x | -4 | -6 | 0 | -10 | 6 | -16 | 50 | -60 |
ĐKXĐ x khác -5
ta có (3x-40) : (x+5)=3 dư -55
để (3x-40) chia hết cho (x+5) thì (x+5) thuộc ước của -55
=> \(x+5=\hept{-55;-11;-5;-1;1;5;11;55}\)
Nếu x+5=-55 => x=-60 (tm ĐKXĐ)
Nếu x+5=-11 => x=-16 (tm ĐKXĐ)
Nếu x+5=-5 => x=-10 (tm ĐKXĐ)
Nếu x+5=-1 => x=-6 (tm ĐKXĐ)
nếu x+5=1 =>x=4 (tm ĐKXĐ)
nếu x+5=5=> x=10 (tm ĐKXĐ)
Nếu x+5=11 =>x=16 (tm ĐKXĐ)
nếu x+5=55 =>x=50 (tm ĐKXĐ)
x^3+3x-5 chia hết cho x^2+2
=>x^3+2x+x-5 chia hết cho x^2+2
=>x-5 chia hết cho x^2+2
=>x^2-25 chia hết cho x^2+2
=>x^2+2-27 chia hết cho x^2+2
=>x^2+2 thuộc Ư(-27)
=>x^2+2 thuộc {3;9;27}
=>\(x\in\left\{1;-1;5;-5\right\}\)
Ta có: 2x-1 chia hết cho x-5
=> 2x-10+9 chia hết cho x-5
=> 2(x-5)+9 chia hết cho x-5
=> 9 chia hết cho x-5
Do x là số nguyên nên x-5 là ước của 9
=> x-5 thuộc {-9;-3;-1;1;3;9}
=> x thuộc {-4;2;4;6;8;14}
\(2x-1\) \(⋮\)\(x-5\)
\(\Leftrightarrow\)\(2\left(x-5\right)+9\) \(⋮\) \(x-5\)
Ta thấy \(2\left(x-5\right)\)\(⋮\)\(x-5\)
\(\Rightarrow\)\(9\)\(⋮\)\(x-5\)
hay \(x-5\)\(\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta lập bảng sau:
\(x-5\) \(-9\) \(-3\) \(-1\) \(1\) \(3\) \(9\)
\(x\) \(-4\) \(2\) \(4\) \(6\) \(8\) \(14\)
Vậy....
những câu tiếp theo làm tương tự
3x+12=2x-4
3x-2x=-4-12
1x=-16
x=-16:1 =>x=-16
14-3x=x+4
-3x-x=4-14
-4x=-10
x=-10:-4 =>x=-10/-4
2(x-2)+7=x-25
2x-4+7=x-25
2x-x=-25+4-7
2x=-28
x=-28;2 =>x=-14
|a+3|=-3
a+3=-3 hoặc a+3=3
a=-6 hoặc a=0
tìm x thì dễ rồi , mình làm tìm n nhá
a, ta có n+5=n-1+6
mà n-1 chia hết cho n-1
suy ra để n là số nguyên thì 6 chia hết cho n
suy ra n là ước của 6 ={
±1;
|
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
\(\Leftrightarrow x-5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(x\in\left\{6;4;7;3;10;0;15;-5\right\}\)