(x+1)(x^2-x+1)-x^2(x-3)=28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(\dfrac{1}{3}x=-\dfrac{4}{3}-\dfrac{1}{2}=-\dfrac{11}{6}\)
\(x=-\dfrac{11}{6}:\dfrac{1}{3}=-\dfrac{11}{2}\)
+) \(\dfrac{4}{3}x=-\dfrac{2}{3}+\dfrac{1}{2}=-\dfrac{1}{6}\)
\(x=-\dfrac{1}{6}:\dfrac{4}{3}=-\dfrac{1}{8}\)
+) \(2\left(x-1\right)=\dfrac{5}{2}+\dfrac{2}{3}=\dfrac{19}{6}\)
\(x-1=\dfrac{19}{12}\)
\(x=\dfrac{31}{12}\)
\(\dfrac{1}{3}x+\dfrac{1}{2}=-\dfrac{4}{3}\)
\(\dfrac{1}{3}x=\left(-\dfrac{4}{3}\right)-\dfrac{1}{2}\)
\(\dfrac{1}{3}x=-\dfrac{11}{6}\)
\(x=\left(-\dfrac{11}{6}\right):\dfrac{1}{3}\)
\(x=-\dfrac{11}{2}\)
\(-\dfrac{2}{3}-\dfrac{4}{3}x=-\dfrac{1}{2}\)
\(\dfrac{4}{3}x=\left(-\dfrac{2}{3}\right)-\dfrac{-1}{2}\)
\(\dfrac{4}{3}x=-\dfrac{1}{6}\)
\(x=\left(-\dfrac{1}{6}\right):\dfrac{4}{3}\)
\(x=-\dfrac{1}{8}\)
\(\dfrac{5}{2}-2\left(x-1\right)=-\dfrac{2}{3}\)
\(2\left(x-1\right)=\dfrac{5}{2}-\left(-\dfrac{2}{3}\right)\)
\(2\left(x-1\right)=\dfrac{19}{6}\)
\(\left(x-1\right)=\dfrac{19}{6}:2\)
\(x-1=\dfrac{19}{12}\)
\(x=\dfrac{19}{12}+1\)
\(x=\dfrac{31}{12}\)
a: \(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)
\(\Leftrightarrow9x^3+9x^2+27x+28-28-9x^3-6x^2-x=0\)
\(\Leftrightarrow3x^2+26x=0\)
=>x=0 hoặc x=-26/3
b: \(\Leftrightarrow x^6-3x^4+3x^2-1-x^6+1=0\)
\(\Leftrightarrow-3x^4+3x^2=0\)
\(\Leftrightarrow-3x^2\left(x^2-1\right)=0\)
hay \(x\in\left\{0;1;-1\right\}\)
a) (x + 3)3 - x(3x + 1)2 + (2x + 1)(4x2 - 2x + 1) = 28
=> x3 + 9x2 + 27x + 27 - x(9x2 + 6x + 1) +(2x + 1)[(2x)2 - 2.x.1 + 12 ] = 28
=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + (2x)3 + 13 = 28
=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 + 1 = 28
=> (x3 - 9x3 + 8x3) + (9x2 - 6x2) + (27x - x) + (27 + 1) = 28
=> 3x2 + 26x + 28 = 28
=> 3x2 + 26x = 0
=> 3x2 + 26x = 0
=> \(3x\left(x+\frac{26}{3}\right)=0\)
=> 3x = 0 hoặc x + 26/3 = 0
=> x = 0 hoặc x = -26/3
b) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
=> \(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)
=> \(x^6-3x^4+3x^2-1-x^6+1=0\)
=> \(\left(x^6-x^6\right)-3x^4+3x^2+\left(-1+1\right)=0\)
=> \(-3x^4+3x^2=0\)
=> \(-\left(3x^4-3x^2\right)=0\)
=> \(3x\left(x^3-x\right)=0\)
=> \(\orbr{\begin{cases}3x=0\\x^3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x\left(x^2-1\right)=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Sorry mình nhầm câu a
a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28
d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
Giải:
a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0
\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5(x2 - 49) = 0
\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5x2 + 245 = 0
\(\Leftrightarrow\) 2x + 255 = 0
\(\Leftrightarrow\) 2x = - 255
\(\Leftrightarrow\) x = - 255 : 2
\(\Leftrightarrow\) x = \(-\frac{255}{2}\)
Vậy x = \(-\frac{255}{2}\)
b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
\(\Leftrightarrow\) x3 + 8 - x3 - 2x = 15
\(\Leftrightarrow\) 8 - 2x = 15
\(\Leftrightarrow\) 2x = 8 - 1
\(\Leftrightarrow\) 2x = - 7
\(\Leftrightarrow\) x = - 7 : 2
\(\Leftrightarrow\) x = \(-\frac{7}{2}\)
Vậy x = \(-\frac{7}{2}\)
c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28
\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - x(9x2 + 6x + 1) + 8x3 - 1 = 28
\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 - 1 = 28
\(\Leftrightarrow\) 26x + 26 = 28
\(\Leftrightarrow\) 26x = 28 - 26
\(\Leftrightarrow\) 26x = 2
\(\Leftrightarrow\) x = 2 : 26
\(\Leftrightarrow\) x = \(\frac{1}{13}\)
Vậy x = \(\frac{1}{13}\)
d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
\(\Leftrightarrow\) x6 - 2x2 + 1 - (x6 - 1) = 0
\(\Leftrightarrow\) x6 - 2x2 + 1 - x6 + 1 = 0
\(\Leftrightarrow\) -2x2 + 2 = 0
\(\Leftrightarrow\) -2x2 = - 2
\(\Leftrightarrow\) x2 = - 2 : (- 2)
\(\Leftrightarrow\) x2 = 1
\(\Leftrightarrow\) x = 1 hoặc x = - 1
Vậy x \(\in\) {1; - 1}
\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)
\(\Leftrightarrow-5x-18=0\)
\(\Leftrightarrow x=-\dfrac{18}{5}\)
Vậy ...
\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy ...
\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)
\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)
Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)
\(\Rightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)
Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...
\(\Leftrightarrow x^3+1-x^3+3x^2=28\)
hay \(x\in\left\{3;-3\right\}\)