Cho pt: x2 - (m-1)x + 3m = 0. Tìm m để A = x12 + (m -1)x2 + \(\frac{m^2}{4}\) đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-mình sửa đề luôn nhé
\(\Delta=9m^2-4\left(3m-2\right)=9m^2-12m+8=\left(3m-2\right)^2+4>0\)
Vậy pt luôn có 2 nghiệm pb
Vì x1 là nghiệm pt trên nên
\(A=3mx_1-3m+2+3mx_2-m+1=3m.3m-4m+3\)
\(=9m^2-4m+3=9m^2-\dfrac{2.3m.4}{6}+\dfrac{16}{36}-\dfrac{16}{36}+3\)
\(=\left(3m-\dfrac{4}{6}\right)^2+\dfrac{23}{9}\ge\dfrac{23}{9}\)Dấu ''='' xảy ra khi m = 2/9
b) Theo định lí Vi-et ta có:
x 1 + x 2 = m + 1 và x 1 . x 2 = m - 2
Do đó A = x 1 2 + x 2 2 - 6 x 1 x 2 = x 1 + x 2 2 - 8 x 1 x 2
= m + 1 2 - 8(m – 2) = m 2 + 2m + 1 – 8m + 16
= m 2 - 6m + 17 = m - 3 2 + 8 ≥ 8
Vậy giá trị nhỏ nhất của A bẳng 8 khi m – 3 = 0 hay m = 3.
\(\Delta'=\left(m+1\right)^2-2m-10=m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
a.
\(P=x_1^2+x_2^2+6x_1x_2=\left(x_1+x_2\right)^2+4x_1x_2\)
\(P=4\left(m+1\right)^2+4\left(2m+10\right)\)
\(P=4m^2+16m+44=\left(4m^2+16m+12\right)+32\)
\(P=4\left(m+1\right)\left(m+3\right)+32\ge32\)
\(P_{min}=32\) khi \(m=-3\)
b.
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m+10\end{matrix}\right.\)
Trừ vế cho vế:
\(x_1+x_2-x_1x_2=-8\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
a, Vì 1 < x1 < x2 < 6 nên pt đã cho có 2 nghiệm dương phân biệt
Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2m-3\right)^2-4m^2+12m>0\\2m-3>0\\m^2-3m>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4m^2-12m+9-4m^2+12m>0\\m>\frac{3}{2}\\m< 0\left(h\right)m>3\end{cases}}\)
\(\Leftrightarrow m>3\)
Có \(\Delta=9>0\)
Nên pt có 2 nghiệm phân biệt \(x_1=\frac{2m-3-3}{2}=m-3\)
\(x_2=\frac{2m-3+3}{2}=m\) (Do m - 3 < m nên x1 < x2 thỏa mãn đề bài)
Vì \(1< x_1< x_2< 6\)
\(\Rightarrow\hept{\begin{cases}m-3>1\\m< 6\end{cases}}\)
\(\Leftrightarrow4< m< 6\)(Thỏa mãn)
c, C1_) Có \(x_1^2+x_2^2=\left(m-3\right)^2+m^2\)
\(=m^2-6m+9+m^2\)
\(=2m^2-6m+9\)
\(=2\left(m^2-3m+\frac{9}{4}\right)+\frac{9}{2}\)
\(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=\frac{3}{2}\)
C2_) Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m-3\\x_1x_2=m^2-3m\end{cases}}\)
Có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(2m-3\right)^2-2m^2+6m\)
\(=4m^2-12m+9-2m^2+6m\)
\(=2m^2-6m+9\)
\(=2\left(m-\frac{3}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Dấu "=" khi \(m=\frac{3}{2}\)
a: Khi m=-1 thì phương trình sẽ là:
x^2-(-3-1)x+2-1-1=0
=>x^2+4x=0
=>x=0 hoặc x=-4
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)