K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Nhận thấy 323=17.19323=17.19 và (17;19)=1(17;19)=1 nên ta cần chứng minh 20n−1+16n−3n20n−1+16n−3n chia hết cho số 1717 và 1919

Ta có 

20n−1⋮(20−1)=19;16n−3n⋮(16+3)=1920n−1⋮(20−1)=19;16n−3n⋮(16+3)=19 (vì nn chẵn)          (∗)(∗)

Mặt khác

20n+16n−3n−1=20n−3n+16n−120n+16n−3n−1=20n−3n+16n−1 

và 20n−3n⋮(20−3)=17;16n−1⋮(16+1)=1720n−3n⋮(20−3)=17;16n−1⋮(16+1)=17                           (∗∗)(∗∗)

Từ (∗)(∗∗)(∗)(∗∗) ta suy ra đpcm

Bài 1:

a: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+1 thì 8p+1=8(3k+1)+1=24k+8+1=24k+9=3(8k+3)⋮3

=>Loại

=>p=3k+2

4p+1=4(3k+2)+1

=12k+8+1

=12k+9

=3(4k+3)⋮3

=>4p+1 là hợp số

b: TH1: p=3

\(2p^2+1=2\cdot3^2+1=2\cdot9+1=18+1=19\) là số nguyên tố

=>Nhận

\(7p+2=7\cdot3+2=21+2=23\) là số nguyên tố

TH2: p=3k+1

\(2p^2+1=2\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1\)

\(=18k^2+12k+2+1=18k^2+12k+3=3\left(6k^2+4k+1\right)\) ⋮3

=>Loại

TH3: p=3k+2

\(2p^2+1=2\left(3k+2\right)^2+1\)

\(=2\left(9k^2+12k+4\right)+1\)

\(=18k^2+24k+8+1=18k^2+24k+9=3\left(6k^2+8k+3\right)\) ⋮3

=>Loại

4 tháng 9

Bài 1

a) Cho \(p\) là số nguyên tố lớn hơn 3. Chứng minh rằng \(8 p + 1\) là số nguyên tố. Chứng minh \(4 p + 1\) là hợp số.

Chứng minh \(8 p + 1\) là số nguyên tố:

  • Ta có \(p\) là số nguyên tố lớn hơn 3, vậy \(p \geq 5\).
  • Xét biểu thức \(8 p + 1\). Ta sẽ thử một số giá trị của \(p\):
    • Nếu \(p = 5\), ta có:
      \(8 p + 1 = 8 \left(\right. 5 \left.\right) + 1 = 41\)
      \(41\) là số nguyên tố.
    • Nếu \(p = 7\), ta có:
      \(8 p + 1 = 8 \left(\right. 7 \left.\right) + 1 = 57\)
      \(57\) không phải là số nguyên tố vì \(57 = 3 \times 19\).
    • Nếu \(p = 11\), ta có:
      \(8 p + 1 = 8 \left(\right. 11 \left.\right) + 1 = 89\)
      \(89\) là số nguyên tố.

Vậy, không phải mọi \(p\) thỏa mãn điều kiện bài toán đều tạo ra \(8 p + 1\) là số nguyên tố. Ta không thể chứng minh điều này với mọi \(p\). Nên bài toán này có thể cần điều kiện bổ sung hoặc có thể có lỗi trong cách đặt bài toán.

Chứng minh \(4 p + 1\) là hợp số:

  • Ta có \(p \geq 5\), vậy xét \(4 p + 1\):
    • Nếu \(p = 5\), ta có:
      \(4 p + 1 = 4 \left(\right. 5 \left.\right) + 1 = 21\)
      \(21\) là hợp số vì \(21 = 3 \times 7\).
    • Nếu \(p = 7\), ta có:
      \(4 p + 1 = 4 \left(\right. 7 \left.\right) + 1 = 29\)
      \(29\) là số nguyên tố.
    • Nếu \(p = 11\), ta có:
      \(4 p + 1 = 4 \left(\right. 11 \left.\right) + 1 = 45\)
      \(45\) là hợp số vì \(45 = 3 \times 15\).

Như vậy, không phải mọi giá trị của \(p\) thỏa mãn điều kiện \(p\) đều tạo ra \(4 p + 1\) là hợp số. Ta không thể chứng minh điều này cho mọi \(p\) mà không có điều kiện bổ sung.


b) Chứng minh \(p\) và \(2 p^{2} + 1\) là các số nguyên tố. Hỏi \(7 p + 2\) là số nguyên tố hay hợp số?

Giả sử \(p\) là số nguyên tố và \(2 p^{2} + 1\) là số nguyên tố. Ta sẽ thử một số giá trị của \(p\).

  • Nếu \(p = 5\), ta có:
    \(2 p^{2} + 1 = 2 \left(\right. 5 \left.\right)^{2} + 1 = 2 \left(\right. 25 \left.\right) + 1 = 51\)
    \(51\) không phải là số nguyên tố vì \(51 = 3 \times 17\).
    Như vậy, không phải mọi \(p\) thỏa mãn điều kiện bài toán đều tạo ra \(2 p^{2} + 1\) là số nguyên tố. Ta không thể chứng minh điều này với mọi giá trị của \(p\).

Bài 2

Cho số tự nhiên \(n > 2\) và không chia hết cho 3. Chứng minh rằng hai số \(n^{2} - 1\) và \(n^{2} + 1\) không thể đồng thời là số nguyên tố.

Chứng minh:

  • Gọi \(p = n^{2} - 1\) và \(q = n^{2} + 1\).
  • Ta biết \(p = n^{2} - 1 = \left(\right. n - 1 \left.\right) \left(\right. n + 1 \left.\right)\).
    • Nếu \(n\) là số nguyên lớn hơn 2, thì \(p = n^{2} - 1\) sẽ là một tích của hai số nguyên lớn hơn 1, do đó \(p\)là hợp số, không phải là số nguyên tố.
  • Do đó, \(p = n^{2} - 1\) không thể là số nguyên tố.
  • Tiếp theo, ta xét \(q = n^{2} + 1\).
    • \(n^{2} + 1\) có thể là số nguyên tố hoặc hợp số tùy thuộc vào giá trị của \(n\), nhưng không thể có cả \(p = n^{2} - 1\) và \(q = n^{2} + 1\) cùng là số nguyên tố.

Kết luận: Do \(p = n^{2} - 1\) không thể là số nguyên tố, nên \(n^{2} - 1\) và \(n^{2} + 1\) không thể đồng thời là số nguyên tố.


Bài 3

Ta gọi \(p\) và \(q\) là hai số nguyên tố liên tiếp nếu giữa \(p\) và \(q\) không có số nguyên tố nào khác (ví dụ: \(7\) và \(11\) là hai số nguyên tố liên tiếp). Tìm ba số nguyên tố liên tiếp \(p\)\(q\)\(r\) sao cho \(p^{2} + q^{2} + r^{2}\) cũng là số nguyên tố.

Giải:

Ta sẽ thử một số bộ ba số nguyên tố liên tiếp nhỏ:

  • Nếu \(p = 3\)\(q = 5\)\(r = 7\), ta có:
    \(p^{2} + q^{2} + r^{2} = 3^{2} + 5^{2} + 7^{2} = 9 + 25 + 49 = 83\)
    \(83\) là số nguyên tố.

Vậy ba số nguyên tố liên tiếp \(p = 3\)\(q = 5\)\(r = 7\) thỏa mãn điều kiện bài toán, vì \(p^{2} + q^{2} + r^{2} = 83\) là số nguyên tố.

Kết luận: Ba số nguyên tố liên tiếp \(p = 3\)\(q = 5\)\(r = 7\) sao cho \(p^{2} + q^{2} + r^{2} = 83\) là số nguyên tố.

16 tháng 10 2018

ta có 

2^n là 3k+1 ,3k+2

xét trường hợp

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

7 tháng 11 2015

Nhận xét:

2n-1; 2n ; 2n+1 là 3 số tự nhiên liên tiếp nên tồng tại một số chia hết cho 3

Lại có:

2n không chia hết cho 3(vì 2 không chia hết cho 3)

2n+1 không chia hết cho 3 (vì là số nguyên tố)

=>2n-1 phải chia hết cho 3

=>2n-1 là hợp số

7 tháng 11 2015

2n+1 là số tự nhiên hay số nguyên tố hả bản