tim MIN A = x^2+y^2-xy-x+y+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\). Cộng theo vế ta có:
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\le\frac{x+y+y+z+x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)
Do đó ta có: \(x+y+z\ge1\).Áp dụng BĐT Cauchy-Schwarz dạng Engel ta cũng có:
\(A\ge\frac{\left(x+y+z\right)^2}{x+y+y+z+x+z}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\frac{\left(x+y+1\right)^2}{xy+x+y}=a\) ( ĐK a > 0 )
=> A = a + 1/a
(*) \(\left(x+y+1\right)^2\ge3\left(xy+x+y\right)\)( Nhân 2 vế với hai sau đưa về hằng đẳng thức )
=> \(\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\Leftrightarrow a\ge3\)
TA có \(A=a+\frac{1}{a}=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}\cdot\frac{1}{a}}+\frac{8\cdot3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Vậy GTNN của A là 10/3 tại x = y= 1
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 dùng tam thức bậc 2, bài 2 chia cả tử và mẫu cho y2, đặt x/y=t rồi làm tương tự bài 1
2.A = 2x2 + 2y2 - 2xy - 2x + 2y + 2 = (x2 - 2xy + y2 ) + (x2 - 2x + 1) + (y2 + 2y + 1) = (x - y)2 + (x - 1)2 + (y +1)2
= (x - y)2 + (1 - x)2 + (y +1)2
Ap dụng bđt Bu nhi a: (ax + by + cz)2 \(\le\) (a2 + b2 + c2)(x2 + y2 + z2). dấu = xảy ra khi a/x = b/y = c/z
ta có [(x - y).1 + (1- x).1 + (y + 1).1]2 \(\le\) [(x - y)2 + (1 - x)2 + (y +1)2].(12 + 12 + 12)
=> 4 \(\le\) 3. 2.A => A \(\ge\)2/3 => Min A = 2/3
dấu = xảy ra khi x - y = 1- x = y + 1 => x = 1/3; y = -1/3