Tìm m sao cho đa thức P(x)=6x^4-10x^3+mx^2+5x-4 chia hết cho Q(x)=2x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 2 cách là dùng phép chia và xét giá trị riêng: mình sẽ dùng cách chia bạn mún làm cách kia thì bảo mình
Bài làm
Mà mình nghĩ là tìm m chứ bạn
a)
10x^2-7x+m 2x-3 5x 10x^2-15x - 8x+m +4 8x-12 - m+12
Để \(f\left(x\right)⋮2x-3\)\(\Leftrightarrow m+12=0\)
\(\Leftrightarrow m=-12\)
Vậy m=-12
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Ta thấy:
A=2x4+ mx3 -mx -2
=(2x4-2)+ (mx3-mx)
=2(x4-1)+ mx( x2-1)
=2( x2-1 ) ( x2+1) +mx( x2-1)
=( x2-1 ) [ 2 (x2+1)+ mx ] chia hết cho x2-1
Hay A chia hết cho B. Vậy với mọi GT của m, thì A luôn chia hết cho B.
(Thử nhé: nếu m=3 thì kết quả là 2x2+3x+2 ; nếu x=4 thì kết quả là 2x2+4x+2.
Thấy gì đặc biệt không nè ? Nếu m=q thì sẽ luôn có kết quả là 2x2+ q.x+2)
Học tốt nhé :)
Cách khác:
Đặt tính chia:
2x^4+mx^3 -mx-2 x^2-1 2x^2+mx+2 2x^4 -2x^2 mx^3+2x^2-mx-2 mx^3 -mx 2x^2 -2 2x^2 -2 0
Vậy với mọi m thì A chia hết cho B
a: P(x)=5x^3+3x^2-2x-5
\(Q\left(x\right)=5x^3+2x^2-2x+4\)
b: P(x)-Q(x)=x^2-9
P(x)+Q(x)=10x^3+5x^2-4x-1
c: P(x)-Q(x)=0
=>x^2-9=0
=>x=3; x=-3
d: C=A*B=-7/2x^6y^4
Để \(2x^3-5x^2+6x+m⋮2x-5\) thì :
\(2x^3-5x^2+6x+m=\left(2x-5\right)\cdot Q\)
Đặt \(x=\frac{5}{2}\)ta có :
\(2\left(\frac{5}{2}\right)^3-5\left(\frac{5}{2}\right)^2+6\cdot\frac{5}{2}+m=\left(2\cdot\frac{5}{2}-5\right)\cdot Q\)
\(15+m=0\)
\(m=-15\)
Vậy........
Bài làm chỉ mang t/c tham khảo,chưa biết đúng hay sai.
Ta có: \(\frac{2x^3-5x^2+6x+m}{2x-5}=\frac{2x^3-5x^2+2x-5+4x+5+m}{2x-5}\)
\(=1+\frac{2x^3-5x^2+4x+5+m}{2x-5}=1+\frac{2x^3-5x^2+2x-5+2x+10+m}{2x-5}\)
\(=2+\frac{2x^3-5x^2+2x+10+m}{2x-5}=3+\frac{2x^3-5x^2+15+m}{2x-5}\)
\(=104+\frac{1}{15}m\).
Để \(2x^3-5x^2+6x+m⋮2x-5\) thì \(\frac{1}{15}m\) là số nguyên hay \(\frac{m}{15}\) nguyên hay \(m\in B\left(15\right)\)
có 2x-1=0=> x=1/2
thay x=1/2 vào p(x) ta có 1/4m-19/8=0=>1/4m=19/8=>m=19/2
đảm bảo đúng đó bạn