K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2021

Vì ( x+ 2 )2  là một số lớn hơn hoặc bằng 0

nên ( x+ 2 )\(^2\)+ 7  có GTNN là 7 khi và chỉ khi x = -2

5 tháng 3 2021

Để biểu thức A nhỏ nhất thì \(\left(x+2\right)^2+7\)là số nhỏ nhất

Vì bình phương của một số luôn luôn là 0 và số nguyên dương

\(\Rightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

5 tháng 6 2016

thế này nè : vì x^2+ x+1> 0vaf x^2 + 3x + 7 >0 

=> A = x^2 + x +! + x^ 2 + 3x + 7= 2x^2 + 4x + 8 , giờ thì lằm bình thường

1:

ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)

 \(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)

\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)

 

28 tháng 2 2022

mk cần gấpgianroi

 

 

 

 

\(P=\left(x^2-3\right)\left(x^2+2\right)\ge-6\forall x\)

Dấu '=' xảy ra khi x=0

17 tháng 12 2021

\(=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi x=3/2

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

28 tháng 2 2022

a) -Thay \(x=a\) vào K ta được:

\(K=\dfrac{16}{\left(a^2+2\right)+4}\)

-Thay \(x=-a\) vào K ta được:

\(K=\dfrac{16}{\left(\left(-a\right)^2+2\right)+4}=\dfrac{16}{\left(a^2+2\right)+4}\)

-Vậy tại x=a và x=-a (a∈R) thì 2 giá trị của K bằng nhau.

b) -Không có GTNN, chỉ có GTLN:

\(K=\dfrac{16}{\left(x^2+2\right)^2+4}\le\dfrac{16}{2^2+4}=2\)

\(K_{max}=2\Leftrightarrow x=0\)

28 tháng 2 2022

thank anh nhiều nha