K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2016

[a-b]>=0 suy ra dpcm

20 tháng 6 2018

a   \(2a>b;2a>0\Rightarrow2a+2a>b+0\Rightarrow4a>b\)

b   \(4a^2+b^2=5ab\Rightarrow4a^2+b^2-5ab=0\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\Rightarrow\left(4a-b\right)\left(a-b\right)=0\Rightarrow\hept{\begin{cases}4a-b=0\Rightarrow4a=b\\a-b=0\Rightarrow a=b\end{cases}}\)

20 tháng 6 2018

c  \(20=4\cdot5>11\)mà \(2\cdot5=10>11\)đâu 

sai đề r

23 tháng 7 2015

\(a>b>0\Rightarrow\frac{a}{b}=\frac{2a}{2b}=\frac{2a}{b+b}<\frac{2a}{a+b}\)

\(\frac{x}{y}=\frac{y}{z}\Rightarrow\frac{x}{z}=\frac{x}{y}.\frac{y}{z}=\frac{x^2}{y^2}=\frac{y^2}{z^2}=\frac{x^2+y^2}{y^2+z^2}\)

11 tháng 10 2017

\(a^2+5b^2-4ab+2a-6b+3\)

\(=\left(a^2-4ab+4b^2\right)+\left(2a-4b\right)+1+\left(b^2-2b+1\right)+1\)

\(=\left(a-2b\right)^2+2\left(a-2b\right)+1+\left(b^2-2b+1\right)+1\)

\(=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1\forall a;b\)

Mà \(1>0\) nên \(a^2+5b^2-4ab+2a-6b+3>0\forall a;b\)(đpcm)

2 tháng 6 2021
Chịu thôi hoho
2 tháng 6 2021

Với \(a>b>c:\hept{\begin{cases}\frac{2a^2}{a-b}\ge\frac{2a^2-2b^2}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)}{a-b}=2a-2b\\\frac{b^2}{b-c}\ge\frac{b^2-c^2}{b-c}=\frac{\left(b-c\right)\left(b+c\right)}{b-c}=b+c\end{cases}}\)

\(\Rightarrow\frac{2a^2}{a-b}+\frac{b^2}{b-c}\ge2a+3b+c\)

Dấu đẳng thức xảy ra \(\Leftrightarrow b=c=0\)(Vô lí với \(b>c\))

Vậy \(\frac{2a^2}{a-b}+\frac{b^2}{b-c}>2a+3b+c\)

26 tháng 3 2016

{a-b}2>=0 

suy ra a2+b2>2ab

3 tháng 9 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) ok nha bạn