cho a/(b+c) + b/(c+a) + c/(a+b) =1.chứng minh : a^2/(b+c) + b^2/(c+a) + c^2/(a+b) =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Cho a,b,c >0
Chứng minh bc/a^2(b+c) + ca/b^2(c+a) +ab/c^2(a+b) > hoặc = 1/2(1/a+1/b+1/c)
2) Cho a,b,c>0 1/a + 1/b + 1/c =1
Chứng minh (b+c)/a^2 + (c+a)/b^2 + (a+b)/c^2 > hoặc = 2
Đọc tiếp...
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
1) Ta có a2 + b2 + c2 = ab + bc + ca
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Rightarrow a=b=c\left(\text{đpcm}\right)\)
a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2bc = 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 = 0
<=> a-b = 0 và b-c=0 và c-a=0
<=> a=b=c
a^2/b+c + b^2/a+c + c^2=a+b
= a(a/b+c) + b(b/a+c) + c(c/a+b)
= a(a/b+c + 1 - 1) + b(b/a+c + 1 - 1) + c(c/a+b + 1 - 1)
= a(a+b+c/b+c) - a + b(a+b+c/a+c) - b + c(a+b+c/a+b) - c
= (a+b+c)(a/b+c + b/a+c + c/a+b) - (A+b+c)
mà a/b+c + b/a+c + c/a+b = 1
= a+b+c - (a+b+c)
= 0
giả thiết
=> a^2 / b+ c + ab/c+a + ac/ a+ b = a
ab/ (b+c) + b^2 / (c+a) + cb/ a+b = b
ac/ b+ c + bc/ c+a + c^2/ a+b = c
Cộng từng vế với nhau ta được :
a^2 / b+ c + ab/c+a + ac/ a+ b + ab/ (b+c) + b^2 / (c+a) + cb/ a+b + ac/ b+ c + bc/ c+a + c^2/ a+b > a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + (ab/ (c+ a) + bc/ (c+a) ) + (ac/ (a+b) + cb/ (a+b)) + (ab/ (b+c) + ac/ (b+c)) = a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + b + c + a = a+ b + c
=> a^2/ b+ c + b^2/ c+a + c^2/ a+b = 0 (ĐPCM)
giả thiết
=> a^2 / b+ c + ab/c+a + ac/ a+ b = a
ab/ (b+c) + b^2 / (c+a) + cb/ a+b = b
ac/ b+ c + bc/ c+a + c^2/ a+b = c
Cộng từng vế với nhau ta được :
a^2 / b+ c + ab/c+a + ac/ a+ b + ab/ (b+c) + b^2 / (c+a) + cb/ a+b + ac/ b+ c + bc/ c+a + c^2/ a+b > a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + (ab/ (c+ a) + bc/ (c+a) ) + (ac/ (a+b) + cb/ (a+b)) + (ab/ (b+c) + ac/ (b+c)) = a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + b + c + a = a+ b + c
=> a^2/ b+ c + b^2/ c+a + c^2/ a+b = 0 (ĐPCM)