tìm số tự nhiên n để 28+211+2n là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(A=2^4+2^7+2^n=144+2^n\)
Nếu \(n\) lẻ \(\Rightarrow n=2k+1\Rightarrow A=144+2.4^k\equiv2\left(mod3\right)\Rightarrow A\) không thể là SCP (loại)
\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)
\(\Rightarrow144+2^{2k}=m^2\)
\(\Rightarrow144=m^2-\left(2^k\right)^2\)
\(\Rightarrow144=\left(m-2^k\right)\left(m+2^k\right)\)
Giải pt ước số cơ bản này ta được đúng 1 nghiệm thỏa mãn là \(2^k=16\Rightarrow k=4\Rightarrow n=8\)

- Với \(n=0\) không thỏa mãn
- Với \(n=1\) không thỏa mãn
- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)
- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5
Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP
Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu

Do \(n^2+2n+6\) là số chính phương nên đặt: \(n^2+2n+6=a^2\)
\(\Rightarrow n^2+2n+1+5=a^2\)
\(\Rightarrow\left(n^2+2n+1\right)+5=a^2\)
\(\Rightarrow\left(n+1\right)^2+5=a^2\)
\(\Rightarrow a^2-\left(n+1\right)^2=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\)
\(\Rightarrow\left(a+n+1\right)\left(a-n-1\right)=5\cdot1\)
Ta có: \(a+n+1>a-n-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+n+1=5\\a-n-1=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+n=4\\a-n=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(4+2\right):2\\n=\left(4-2\right):2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\n=1\end{matrix}\right.\)
Vậy: \(n^2+2n+6\) là số chính phương khi \(n=1\)

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
Đặt 2n+1=k\(^{^{}2}\) , 3n+1=p\(^{^{}2}\)
Từ cách đặt trên chuyển về pt: x\(^{^{}2}\) - 6y\(^{^{}2}\) = 3 (1) với x=3k, y=p
Xét pt Pell (I): x\(^{^{}2}\) - 6y\(^{^{}2}\) = 1. Nghiệm nhỏ nhất: (a,b) = (5,2)
Gọi (x',y') là nghiệm nhỏ nhất của pt (1)
Ta có y'\(^{^{}2}\) \(\le\) max { nb\(^{^{}2}\), \(\frac{-na^2}{d}\) } = max {12, -12,5} = 12 (n=3, d=6)
-> y' \(\le\) 3 (do y' nguyên dương) -> y' \(\in\) {1,2,3}
Thử trực tiếp, dễ thấy (x',y') = (3,1) thoả mãn
-> Pt (1) có dãy nghiệm:
\(x_0\) = 3, \(y_0\) = 1, \(x_{m+1}\) = 5\(x_{m}\) + 12\(y_{m}\) , \(y_{m+1}\) = 2\(x_{m}\) + 5\(y_{m}\)
-> \(k_0\) =1, \(p_0\) =1, \(k_{m+1}\) = 5\(k_{m}\) + 4\(p_{m}\) , \(p_{m+1}\) = 6\(k_{m}\) + 5\(p_{m}\)
Biến đổi, ta chuyển dãy về thành dãy (\(t_{m}\) ) được xác định qua công thức truy hồi sau:
\(t_1\) = 40, \(t_{m+1}\) = 49\(t_{m}\) + 20 + 20\(\sqrt{6t_{m^{}}^2+5t_{m}+1}\) (m nguyên dương)
Khi đó (\(t_{m}\)) vét hết tất cả các giá trị của n để 2n+1 và 3n+1 là số chính phương
=> Với mỗi m bất kì, ta tìm được một giá trị n thoả mãn.

\(n^2-2n-10\)
\(=n^2-2n+1-11\)
\(=\left(n-1\right)^2-11\)
