K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

Đề sai rồi bạn

12 tháng 9 2017

 a, x(x-1)(x+1)(x+2)=24 
[x(x+1)]*[(x-1)(x+2)]=24 
(x^2+x)*(x^2+x-2)=24 
đặt t=x^2+x;ta đc 
t*(t-2)=24 
t^2-2t=24 
t^2-2t+1=25 
(t-1)^2=5^2 
(t-1)^2-5^2=0 
((t-6)(t+4)=0 
t=6 hoặc t= -4 
với t=6 
thì x^2+x=6 <=> (x+1/2)^2 = 25/4 <=> (x+1/2)^2 = (5/2)^2 <=> (x+1/2)^2 - (5/2)^2 =0 
đến đây lại áp dụng HĐT thứ 3 giống như khi tìm t lúc nãy là ra 
với t= -4 em tự làm 
b, 2x(8x-1)^2 (4x-1)=9 <=> (8x-1)^2*(8x^2-2x)=9 
<=> (64x^2-16x+1)*(8x^2-2x)=9 
đặt t=(8x^2-2x) => 64x^2-16x =8t 
ta đc: (8t+1)*t=9 <=> 8t^2+t-9 = 0 <=> (t-1)(8t+9)=0 
c, (21/x^2-4x+10)- x^2+4x-6=0 <=> 21/x^2 - x^2 +4 =0 
đảt t=x^2 (t#0) 
ta đc: 21/t - t + 4 = 0 
quy đồng đc: 21-t^2+4t = 0 (với t # 0) 
<=> -(t-2)^2 + 25 =0 <=> 5^2 - (t-2)^2 = 0 
d, 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0

P/s: Thay bằng a,b,c, cho dễ hiểu nha. Tham khảo nhé   ♥ ♥ ♥

15 tháng 9 2017

.camon❤

6 tháng 10 2019

1) \(\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=\left(x^2-8x+16\right)+1\)

\(=\left(x-4\right)^2+1\)

Vì \(\left(x-4\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)

Vậy....

2) tương tự

6 tháng 10 2019

\(1.\left(x-3\right)\left(x-5\right)+2\)

\(=x^2-8x+15+2\)

\(=x^2-2.4x+16+1\)

\(=\left(x-4\right)^2+1\)

Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)

hay \(\left(x-3\right)\left(x-5\right)+2>0\)

4 tháng 12 2018

\(x^2+4x+y^2-y+5=\left(x^2+4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+\frac{3}{4}\)

                                            \(=\left(x+2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

P/S : Cái chỗ -y phải là -2y thì mới > 0 được , 

2 tháng 9 2018

Bài này là chứng minh \(4x-x^2-5< 0\forall x\)

\(4x-x^2-5=-\left(x^2-2.x.2+2^2\right)-1=-\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

\(\Rightarrow-\left(x-2\right)^2-1< 0\forall x\)

\(\Rightarrow4x-x^2-5< 0\forall x\)

                            đpcm

2 tháng 9 2018

cái này cứ bị trượt mik ghi 2 , 3 lần rùi đó cách làm : bạm bỏ dấu trừ ra ngoài bên trong đổi dấu các số hạng , tiếp cho ra hằng đẳng thức tách ra đc -(x^2+2.x . 2+2^2 -2^2+ 5) rồi tự lm nha 

12 tháng 9 2017

1)

Ta có: \(x^2-4x+5=x^2-4x+4+1=\left(x+2\right)^2+1\ge1>0\left(đpcm\right)\)

2)

Ta có:\(-x^2+8x-17=-x^2+8x-16-1=-\left(x^2-8x+16\right)-1=-\left(x-4\right)^2-1\le-1< 0\)

29 tháng 5 2016

5x^2+2y^2+4xy-4x-y+5=(4x^2+y^2+4xy)+(x^2-4x+4)+(y^2-y+1/4)+3/4 =(2x+y)^2+(x-2)^2+(y-1/2)^2+3/4  (1)

 vi (2x+y)^2>=0 , (x-2)^2>=0  ,(y-1/2)^2>=0 (2)

tu 1 va 2 suy ra dieu phai chung minh

29 tháng 5 2016

(x+y)^2+(x+2)^2-(-x-y)^2+x^2+y^2+1>=0

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

26 tháng 12 2016

\(A=\left(x-2+\frac{1}{x}\right)+2y-3=\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+2y-3\ge-3\)

\(\left(1\right)\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2\ge0\) mọi x>0

\(\left(2\right)2y\ge0\) với mọi y>0

\(\left(3\right)-3\ge-3\) với x,y

(1)+(2)+(3)=> dpcm

Hiểu thì  làm tiếp

4 tháng 1 2018

\(x^4+4x+5\)

\(=\left(x^4+4x+4\right)+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\)với mọi x

\(\Rightarrow\left(x+2\right)^2+1>0\)với mọi x

vậy.....(đpcm)

4 tháng 1 2018

Bạn xem có hằng đẳng thức nào nv không??