K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

làm gì vậy abnj

20 tháng 3 2016

ta co ;[a+b+c]2 >=0   

suy ra a2+b2+c+2ac+2ab+2bc>=0

suy ra a2+b2+c2>=   -2{ab+ac+bc}

suy ra a2+b2+c2<=2ab+2ac+2bc

3 tháng 9 2019

Do a,b,c là độ dài 3 cạnh tam giác nên \(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự:\(b^2< bc+ca;c^2< ca+cb\)

Cộng vế theo vế ta có điều cần chứng minh.

1 tháng 8 2023

ĐS là gì thế

 

(a-b-c)^2

=(a-b)^2-2c(a-b)+c^2

=a^2+b^2+c^2-2ab-2ac+2bc

14 tháng 7 2015

Biến đổi vế trái ta có 

(a+b+c)^2 = (a+b + c)( a+b+c) = a(a+b + c) + b(a+b+c ) + c (a+b+c )

                                              = a^2 + ab +ac + ab + b^2 + bc + ac + bc + c^2 

                                               = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac => ĐPCM

14 tháng 8 2024

Ta có:

(a + b + c)2 = (a + b + c)(a + b + c)

= a2 + ab + ac + ab + b2 + bc + ac + bc + c2

= a2 + b2 + c2 + 2ab + 2bc + 2ac (đpcm)

Vậy (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac.

13 tháng 3 2017

a) đáp án A=1

b) B=0

c) C=1

9 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}\)

\(=\dfrac{3^2}{\left(a+b+c\right)^2}=\dfrac{9}{\left(a+b+c\right)^2}=9\left(a+b+c\le1\right)\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)