cho S=3/4+8/9+15/16+......+20142-1/20142.CHỨNG MINH RẰNG S KHÔNG PHẢI LÀ SỐ TỰ NHIÊN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


S=43+98+...+25002499
\(= \frac{2^{2} - 1}{2^{2}} + \frac{3^{2} - 1}{3^{2}} + . . . + \frac{5 0^{2} - 1}{5 0^{2}}\)
\(= \left(\right. 1 + 1 + . . . + 1 \left.\right) - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right)\)
\(= 49 - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right)\)
\(\frac{1}{2^{2}} < \frac{1}{1 \cdot 2} = 1 - \frac{1}{2}\)
\(\frac{1}{3^{2}} < \frac{1}{2 \cdot 3} = \frac{1}{2} - \frac{1}{3}\)
...
\(\frac{1}{5 0^{2}} < \frac{1}{49 \cdot 50} = \frac{1}{49} - \frac{1}{50}\)
Do đó: \(\frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}} < 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + . . . + \frac{1}{49} - \frac{1}{50} = 1 - \frac{1}{50}\)
=>\(\frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}} < 1\)
=>\(0 < \frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}} < 1\)
=>\(0 > - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right) > - 1\)
=>\(0 + 49 > - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right) + 49 > - 1 + 49\)
=>49>B>48
=>S không là số tự nhiên
S=43+98+1615+...+50002499
\(S = 1 - \frac{1}{4} + 1 - \frac{1}{9} + 1 - \frac{1}{16} + . . . + 1 - \frac{1}{5000}\)
\(S = \left(\right. 1 + 1 + 1 + . . . + 1 \left.\right) - \left(\right. \frac{1}{4} + + \frac{1}{9} + \frac{1}{16} + . . . + \frac{1}{5000} \left.\right)\)
\(S = 49 - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right) < 49\)\(\left(\right. 1 \left.\right)\)
Lại có :
\(\frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} < \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + . . . + \frac{1}{49.50}\)
\(= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + . . . + \frac{1}{49} - \frac{1}{50} = 1 - \frac{1}{50} < 1\)
\(\Rightarrow\)\(- \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right) > - 1\)
\(\Rightarrow\)\(S = 49 - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right) > 49 - 1 = 48\)\(\left(\right. 2 \left.\right)\)
Từ (1) và (2) suy ra :
\(48 < S < 49\)
Vậy S không là số tự nhiên
Chúc các bạn học tốt nhé ! =))


Muốn chứng minh 3/4+8/9+15/16+...+2499/2500 không phải số tự nhiên thì chứng minh nó nhỏ hơn 1
Ta có: \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}=\frac{1.3}{2^2}.\frac{2.4}{3^2}....\frac{49.51}{50^2}\)
\(=\frac{1.2....49}{2.3...50}.\frac{3.4...51}{2.3...50}=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}<1\)
\(\RightarrowĐPCM\)