cho A=1/101+1/102+...+1/200
chung minh rang
a) A>7/12
b)A>5/8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 𝐶=1101+1102+1103+...+1200C=1011+1021+1031+...+2001
=(1101+1102+...+1120)+(1121+1122+1123+...+1150)+(1151+1152+1153+...+1180)+(1181+1182+1183+...+1200)=(1011+1021+...+1201)+(1211+1221+1231+...+1501)+(1511+1521+1531+...+1801)+(1811+1821+1831+...+2001)
⇔𝐶>20⋅1120+30⋅1150+30⋅1180+20⋅1200⇔C>20⋅1201+30⋅1501+30⋅1801+20⋅2001
⇔𝐶>16+15+16+110=1930=76120⇔C>61+51+61+101=3019=12076
⇔𝐶>75120=58⇔C>12075=85
hay 𝐶>58C>85(đpcm)
TỰ thay C=a nhA
Ta có : \(\frac{1}{101}\) > \(\frac{1}{150}\)
\(\frac{1}{102}\) > \(\frac{1}{150}\)
.....................................................
\(\frac{1}{149}\) > \(\frac{1}{150}\)
=> \(\frac{1}{101}\) + \(\frac{1}{102}\) + .......... + \(\frac{1}{150}\) > \(\frac{1}{150}\) + \(\frac{1}{150}\) + .......... + \(\frac{1}{150}\)( có 50 p/s ) = \(\frac{1}{150}\) . 50 = \(\frac{1}{3}\)(1)
Ta lại có : \(\frac{1}{151}\) > \(\frac{1}{200}\)
\(\frac{1}{152}\) > \(\frac{1}{200}\)
............................................
\(\frac{1}{199}\)> \(\frac{1}{200}\)
=> \(\frac{1}{151}\) + \(\frac{1}{152}\) + .................. + \(\frac{1}{200}\) > \(\frac{1}{200}\)+ \(\frac{1}{200}\) + ...................+ \(\frac{1}{200}\)(có 50 p/ )=\(\frac{1}{200}\) . 50 = \(\frac{1}{4}\)(2)
Từ (1) và (2)
=> \(\frac{1}{101}\)+ \(\frac{1}{102}\) + \(\frac{1}{103}\) + ...................+ \(\frac{1}{200}\)> \(\frac{1}{3}\) + \(\frac{1}{4}\) = \(\frac{4}{12}\) + \(\frac{3}{12}\) = \(\frac{7}{12}\)
Vậy A > \(\frac{7}{12}\)
sao dễ vậy
a) Ta chọn biểu thức B làm trung gian sao cho A > B, còn B \(\ge\)\(\frac{7}{12}\).
Tách A thành 2 nhóm, mỗi nhóm 50 phân số, rồi thay mỗi phân số trong từng nhóm bằng phân số nhỏ nhất trong nhóm ấy, ta được :
A = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(>\frac{1}{150}.50+\frac{1}{200}.50=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
b) Tách A thành bốn nhóm rồi cũng làm như trên, ta được :
A > \(\frac{25}{125}+\frac{25}{150}+\frac{25}{175}+\frac{25}{200}=\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\frac{1}{8}=\frac{107}{210}+\frac{1}{8}>\frac{1}{2}+\frac{1}{8}=\frac{5}{8}\)
câu b
C= 1/181+1/182+...1/200< 20/200=1/10
A=B+C<4/9+1/10=40/90+9/90=49/90 mà 49/90<3/4 ( quy đồng)
Vậy A<3/4
** D= 1/101+1/101+...1/150>50.(1/101)=50/101>1...
E= 1/151+1/152+...+1/200> 50.(1/151)=50/151>1/3
D+E>1/3+1/3=2/3 mà 2/3>5/8
Vậy A>5/8
a)Ta CM: S(n)>7/12 (*) bằng qui nạp
+S(3)=1/4+1/5+1/6>7/12
+giã sử S(k)>7/12 (k>=3, k nguyên)
tức là:S(k)=1/(k+1)+1/(k+2)+...+1/2k>7/12
+Ta có: S(k+1)=1/(k+2)+1/(k+3)+...+1/(2k+2)
=1/(k+1)+1/(k+2)+...
..+1/2k+1/(2k+1)+1/(2k+2)-1/(k+1)
=S(k)+1/(2k+1)+1/(2k+2)-1/(k+1)
=S(k)+1/[(2k+1)(2k+2)]>7/2
theo nguyên lí qui nạp=>(*) đúng với mọi n>3, n nguyên
câu b tương tự