Cho a,b thỏa mãn
- a^2+b^2+ab-3=0
- a+b=<2
Giá trị nhỏ nhất của A=a^2-ab+b^2=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đặt}\)\(x=a+b\ge2\)
\(P=\frac{a^2+b^2+5}{a+b+3}=\frac{a^2+b^2+2.1+3}{a+b+3}=\frac{a^2+b^2+2ab+3}{a+b+3}=\frac{\left(a+b\right)^2+3}{a+b+3}=\frac{x^2+3}{x+3}\)
\(\Rightarrow P-\frac{7}{5}=\frac{x^2+3}{x+3}-\frac{7}{5}=\frac{\left(5x^2+15\right)-\left(7x+21\right)}{x+3}=\frac{\left(x-2\right).\left(5x+3\right)}{x+3}\ge0\)
\(\text{Vậy giá trị nhỏ nhất của}\)\(P=\frac{7}{5}\Rightarrow x=2\)
\(\Rightarrow a+b=2;ab=1\)
\(\Rightarrow a=b=1\)
\(P=a^2+b^2+\frac{5}{a+b+3}\left(a,b>0\right)\)..
\(P=\left(\frac{a^2}{1}+\frac{b^2}{1}+\frac{5^2}{a+b+3}\right)-\frac{20}{a+b+3}\).
Trước hết, ta chứng minh được:
\(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\)với \(x,y,z\in R;m,n,p>0\)\(\left(1\right)\)(tự chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow\frac{x}{m}=\frac{y}{n}=\frac{z}{p}\).
Áp dụng bất đẳng thức \(\left(1\right)\)với \(a,b>0\), ta được:
\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{5^2}{a+b+3}\ge\frac{\left(a+b+5\right)^2}{1+1+a+b+3}=\frac{\left(a+b+5\right)^2}{a+b+5}\)\(=a+b+5\).
\(\Leftrightarrow a^2+b^2+\frac{5^2}{a+b+3}-\frac{20}{a+b+3}\ge a+b+5-\frac{20}{a+b+3}\).
\(\Leftrightarrow P\ge a+b+5-\frac{20}{a+b+3}\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{1}=\frac{b}{1}=\frac{5}{a+b+3}=\frac{a+b+5}{1+1+a+b+3}=1\).
\(\Leftrightarrow a=b=1\).
Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a+b\ge2\sqrt{ab}\).
\(\Leftrightarrow a+b\ge2.\sqrt{1}=2.1=2\)(vì \(ab=1\)).
\(\Leftrightarrow a+b+3\ge5\).
\(\Rightarrow\frac{1}{a+b+3}\le\frac{1}{5}\).
\(\Rightarrow\frac{-1}{a+b+3}\ge-\frac{1}{5}\).
\(\Leftrightarrow\frac{-20}{a+b+3}\ge\frac{-20}{5}=-4\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Ta lại có: \(a+b\ge2\)(chứng minh trên).
\(\Leftrightarrow a+b+5\ge7\left(4\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Từ \(\left(3\right)\)và \(\left(4\right)\), ta được:
\(a+b+5-\frac{20}{a+b+3}\ge7-4=3\left(5\right)\).
Từ \(\left(2\right)\)và \(\left(5\right)\), ta được:
\(P\ge3\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Vậy \(minP=3\Leftrightarrow a=b=1\).
vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a ∀mọi x (1)
vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x (2)
từ 1 và 2 ⇒ a2+b2 ≥ 2a+2b
⇒ A≥ 2(a+b)=2
dấu''=' xảy ra khi a=b=1/2
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+4\geq 2\sqrt{4a^2}=|4a|\geq 4a$
$b^2+4\geq |4b|\geq 4b$
$2(a^2+b^2)\geq 4|ab|\geq 4ab$
Cộng theo vế và thu gọn:
$3(a^2+b^2)+8\geq 4(a+b+ab)=32$
$\Rightarrow a^2+b^2\geq 8$
Vậy $a^2+b^2$ min bằng $8$. Giá trị này đạt tại $a=b=2$
Áp dụng BĐT cosi:
`a^2+4>=4a`
`b^2+4>=4b`
`=>a^2+b^2+8>=4(a+b)(1)`
Áp dụng cosi:
`a^2+b^2>=2ab`
`=>2(a^2+b^2)>=4ab(2)`
Cộng từng vế (1)(2) ta có:
`3(a^2+b^2)+8>=4(a+b+ab)=32`
`<=>3(a^2+b^2)>=24`
`<=>(a^2+b^2)>=8`
Dấu "=" `<=>a=b=2`
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)
\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)
\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)
\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)
\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)
\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)
a+b=<2=>ab=<1
a^2-ab+b^2=a^2+b^2+ab-2ab=3-2ab>=3-2=1
dấu = xảy ra khi a=b=1