Chứng tỏ B chia hết cho 160
Với: B = 3 + 32 + 33 + ... + 3100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^0+3^1+3^2...+3^{100}\)
\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)
\(=3^0\times13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)
B=30+31+32...+3100B=30+31+32...+3100
=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)=30×(1+31+32)+33×(1+31+32)+...+398×(1+31+32)
=30×13+33×13+...+398×13=30×13+33×13+...+398×13
=13×(30+33+...+3
Đặt A = 3¹ + 3² + 3³ + 3⁴ + ... + 3⁹⁹ + 3¹⁰⁰
= (3¹ + 3²) + (3³ + 3⁴) + ... + (3⁹⁹ + 3¹⁰⁰)
= 3.(1 + 3) + 3³.(1 + 3) + ... + 3⁹⁹.(1 + 3)
= 3.4 + 3³.4 + ... + 3⁹⁹.4
= 4.(3 + 3³ + ... + 3⁹⁹) ⋮ 4
Vậy A ⋮ 4
\(A=3+3^2+3^3+3^4+.......+3^{100}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+.........+3^{97}.40\)
\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)
\(\Rightarrow A⋮40\)( 1 )
Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)
\(\Rightarrow A⋮120\)
Vậy \(A⋮120\)( ĐPCM )
a) B\(=\) 3 + 32 + 33 + ... + 360
\(=\)(3+32)+(33+34)+...+(359+360)
\(=\)3(1+3)+33(1+3)+...+359(1+3)
\(=\)(3+1)(3+33+...+359)
\(=\)4(3+33+...+359)⋮4
⇒B⋮4
b) B\(=\)(3+32+33)+...+(358+359+360)
\(=\)30(3+32+33)+...+357(358+359+360)
\(=\)3+32+33(30+33+36+...+357)
\(=\)39(30+33+36+...+357)⋮13
⇒ B⋮13
A=2+22+23+...+299+2100A=2+22+23+...+299+2100
⇒2A=22+23+24+...+2100+2101⇒2A=22+23+24+...+2100+2101
⇒A=2101−2⇒A=2101−2
B=3+32+33+...+399+3100B=3+32+33+...+399+3100
⇒3B=32+33+34+...+3100+3101⇒3B=32+33+34+...+3100+3101
⇒2B=3101−3⇒2B=3101−3
⇒B=3101−32
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\\=(3+3^2)+(3^3+3^4)+(3^5+3^6)+(3^7+3^8)\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+3^7\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+3^7\cdot4\\=4\cdot(3+3^3+3^5+3^7)\)
Vì \(4\cdot(3+3^3+3^5+3^7) \vdots 4\)
nên \(B\vdots4\).
`#3107.101107`
\(B=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+\left(3^7+3^8\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+3^7\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+3^5+3^7\right)\)
\(=4\left(3+3^3+3^5+3^7\right)\)
Vì \(4\left(3^3+3^5+3^7\right)\) $\vdots 4$
`\Rightarrow B \vdots 4`
Vậy, `B \vdots 4.`
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3
Lời giải:
$B=3+(32+33+...+3100)$
$=3+\frac{(3100+32).3069}{2}=3+4806054=4806057$ không chia hết cho $160$
Bạn xem lại đề.