Chứng minh ƯCLN (2n + 1; 7n + 4) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
a)Gọi d là ƯC(2n+1;6n+5) (d thuộc N*)
=>2n+1 chia hết cho d =>6n+6 chia hết cho d
=>6n+5 chia hết cho d
=>6n+6-6n-5 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(2n+1;6n+5)=1
=>đpcm
b)Gọi d là ƯC(3n+2;5n+3) (d thuộc N*)
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d =>15n+9 chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(3n+2;5n+3)=1
=>đpcm
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
a,Gọi d là UCLN(2n+1;3n+2)
Ta có:
3n+2 chia hết cho d
2n+1 chia hết cho d
=> 2(3n+2)-3(n+1)=1 chia hết cho d
=> d E {-1;1}
=> 2n+1 và 3n+2 luôn nguyên tố cùng nhau
=> BCNN(2n+1,3n+2)=(2n+1)(3n+2) (ĐPCM)
b, Gọi a là UCLN(2n+1;9n+6)
=> 2n+1 chia hết cho a
9n+6 chia hết cho a
=> 2(9n+6)-9(2n+1) chia hết cho a
=> 3 chia hết cho a=> a E {3;-3;1;-1}
Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc
2n+1 chia hết cho 3 <=> n=3k+1 (k E N)
Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1
còn nếu n khác: 3k+1
=> UCLN(2n+1;9n+6)=1
Việc khẳng định ƯCLN (2n+1, 9n+6)=3 là sai nhé bạn. 3 là ƯCLN có thể xảy ra của $2n+1, 9n+6$ thôi. Còn việc đưa ra khẳng định ƯCLN(2n+1, 9n+6)=3 là sai vì 2n+1 chưa chắc đã chia hết cho 3 với n là số tự nhiên.
Gọi ƯCLN(n+1;2n+1) là d.( d nguyên dương)
Có n+1 chia hết cho d, 2n+1 chia hết cho d nên (2n+1) - (n+1) chia hết cho d
Suy ra n chia hết cho d nên d là ƯC(n+1;n)
Mà ƯCLN(n;n+1)=1 nên d=1 suy ra n+1 và 2n+1 nguyên tố cùng nhau
Gọi d là ƯCLN(n+1,n+2)
=>n+1\(⋮\)d(1)
=>n+2\(⋮\)d(2)
Từ(1) và(2) suy ra(n+2)-(n+1)\(⋮\)d
=>n+2-n-1\(⋮\)d
=>1\(⋮\)d
=>d\(\in\)Ư(1)={1}
=>d=1
Vậy n+1 và n+2 nguyên tố cùng nhau
Chúc bn học tốt
a,đặt d=(2n+1,2n+3)
=> 2n+1 chia hết cho d
2n+3 chia hết cho d
=> 2 chia hết d=>mà 2n+1 và 2n+3 lẻ => 1 chia hết d => d=1
b. Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath
Đặt \(ƯCLN\left(2n+1;7n+4\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\7n+4⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7\left(2n+1\right)⋮d\\2\left(7n+4\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}14n+7⋮d\\14n+8⋮d\end{cases}}\)
\(\Rightarrow\left(14n+8\right)-\left(14n+7\right)⋮d\)\(\Rightarrow14n+8-14n-7⋮d\)\(\Rightarrow1⋮d\)\(\Rightarrow d=1\)
Vậy ta có đpcm
ƯCLN (2n + 1; 7n + 4) là :d
=>2n+1\(⋮\)d và 7n+4 \(⋮\)d
=>14n+7\(⋮\)d và 14n +8\(⋮\)d
=>(14n+8)-(14n-7)\(⋮\)d
=>1\(⋮\)d
=>d\(\in\)Ư(1)
=>d={-1;1)
ta tháy -1<1
=>UCLN(2n+1;7n+4)=1