tìm x biết
/x-2021/+/x-2022/ = 2024
dấu /a/ là giá trị tuyệt đối nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có /x-8/>hoặc=0
/y+2/> hoặc=0
và /x-8/+/y+2/=2
=> /x-8/=1 và /y+2/=1
hoặc /x-8/=0 và /y+2/=2
hoặc /x-8/=2 và /y+2/=0
*với /x-8/=1 và /y+2/=1 ta có
/x-8/=1 => x-8=1 hoặc -1 / /y+2/=1 => y+2=1 hoặc -1
x-8=1 => x=9 / y+2=1 => y=-1
x-8=-1 =>x=7 / y+2=-1 =>y=-3
*với /x-8/=0 và /y+2/=2
/x-8/=0 =>x-8=0 =>x=8 / /y+2/=2 => y+2=2 hoặc -2
/ y+2=2 =>y=0
/ y+2=-2 =>y=-4
*với /x-8/=2 và /y+2/=0
/x-8/=2 => x-8=2 hoặc -2
x-8=2 =>x=10
x-8=-2 =>x=6
tự kết luận nha (^_^)
Số hạng thứ nhất công(+) số hạng thứ 3 lớn hơn hoạc bằng VP đẳng thức khi 6<=x<=2022
Vậy các số hạng cò lại phải bằng không
=>
Số hạng 2=>x=0
Số hạng 4=>y=2015
Số hạng cuối=>z=2017
\(a,TH1:x-2021=0=>x=2021\)
\(Th2:x-2022=0=>x=2022\)
Vậy \(x\in\left\{2021;2022\right\}\)
\(b,x\left(8-5\right)=1080\)
\(x.3=1080\)
\(x=360\)
\(c,x^3=216< =>6^3=216=>x=3\)
\(d,5^5=3125\)
a) ( x- 2021) * ( x- 2022) = 0
=> \(\orbr{\begin{cases}x-2021=0\\x-2022=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2021\\x=2022\end{cases}}}\)
b) b. 8x - 5x = 2022
=> 3x = 2022
=> x = 674
c) \(5\cdot x^3=1080\)
=> \(x^3=216\)
=> \(x^3=6^3\)
=> x = 6
d) \(5^x=3125\)
=> \(5^x=5^5\)
=> x = 5
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
Bài 1:
a: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{1}{2}\\x-\dfrac{1}{3}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)
* Nếu \(x< 1\)
=> 1 - x + 3 - x = 2
<=> 4 - 2x = 2
<=> x = 1 (không TM)
* Nếu \(1\le x< 3\)
=> x - 1 + 3 - x = 2
<=> 2 = 2 (đúng)
=> phương trình luôn có nghiệm.
* Nếu \(x\ge3\)
=> x - 1 + x - 3 = 2
<=> 2x - 4 = 2
<=> x = 3 (TM)
Vậy với \(1\le x< 3\)thì phương trình luôn có nghiệm
với \(x\ge3\)thì phương trình có nghiệm x = 3.
Ta có \(|x-1|+|x-3|=2\)\(\Rightarrow|x-1|+|3-x|=2\)
Áp dụng bất đẳng thức \(|a|+|b|\ge|a+b|\)
Dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)
Do đó \(|x-1|+|3-x|\ge|x-1+3-x|=|2|=2\)
Dấu bằng xảy ra khi và chỉ khi \(\left(x-1\right)\left(3-x\right)\ge0\)
\(\cdot\orbr{\begin{cases}\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\\\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\)
\(\cdot\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\Rightarrow1\le x\le3\)
\(\cdot\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\)( vô lý )
Vậy \(1\le x\le3\)
PS : vì đề bài không yêu cầu tìm \(x\in Z\) nên mình để đáp số như vậy
còn nếu yêu cầu bạn phải tìm được 3 giá trị của x là 1;2;3
Đặt \(A=\left|x-1,5\right|+\left|x-2,5\right|\)
Ta có : \(\left|x-1,5\right|\ge0.Với\forall x\in R\)
\(\left|x-2,5\right|\ge0.Với\forall x\in R\)
\(\Rightarrow A=\left|x-1,5\right|+\left|x-2,5\right|\ge0\)
Dấu " = " xảy ra khi \(\orbr{\begin{cases}\left|x-1,5\right|=0\\\left|x-2,5\right|=0\end{cases}\Rightarrow x=\orbr{\begin{cases}1,5\\2,5\end{cases}}}\). Vậy Min A = 0 khi và chỉ khi \(x=\orbr{\begin{cases}1,5\\2,5\end{cases}}\)