K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2016

đội tuyển toán trường THCS vĩnh tường

\(=\left(a^{10}\right)^2+\left(a^4\right)^5=2a^{20}\)

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

25 tháng 9 2018

a+b+c=0⇔a3+b3+c3=3abca+b+c=0⇔a3+b3+c3=3abc (cái này tự chứng minh nhá, dễ)

⇒3abc(a2+b2+c2)=(a3+b3+c3)(a2+b2+c2)=a5+b5+c5+a3(b2+c2)+b3(c2+a2)+c3(a2+b2)⇒3abc(a2+b2+c2)=(a3+b3+c3)(a2+b2+c2)=a5+b5+c5+a3(b2+c2)+b3(c2+a2)+c3(a2+b2)

Lại có b+c=−a⇔b2+c2=(b+c)2−2bc=a2−2bcb+c=−a⇔b2+c2=(b+c)2−2bc=a2−2bc

Tương tự c2+a2=b2−2ac,a2+b2=c2−2abc2+a2=b2−2ac,a2+b2=c2−2ab

Nên 3abc(a2+b2+c2)=a5+b5+c5+a3(a2−2bc)+b3(b2−2ac)+c3(c2−2ab)=2(a5+b5+c5)−2abc(a2+b2+c2)

6 tháng 5 2022

Ta có

\(\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)=a^5+a^2b^3+a^2c^3+a^3b^2+b^5+b^2c^3+a^3c^2+b^3c^2+c^5\)

\(\Rightarrow a^5+b^5+c^5=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)-a^2b^2\left(a+b\right)-b^2c^2\left(b+c\right)-a^2c^2\left(a+c\right)\)

Do a+b+c=0

=> a+b=-c; b+c=-a; a+c=-b

\(\Rightarrow a^5+b^5+c^5=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)+a^2b^2c+ab^2c^2+a^2bc^2=\)

\(=\left(a^2+b^2+c^2\right)\left(a^3+b^3+c^3\right)+abc\left(ab+bc+ac\right)=\)

\(=\left(a^2+b^2+c^2\right)\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]+abc\left(ab+bc+ac\right)=\)

\(=\left(a^2+b^2+c^2\right).\left[\left(-c^3\right)-3ab.\left(-c\right)+c^3\right]+abc\left(ab+bc+ac\right)=\)

\(=\left(a^2+b^2+c^2\right).3abc+abc\left(ab+bc+ab\right)=\)

\(=abc.\left[3\left(a^2+b^2+c^2\right)+ab+bc+ac\right]=\)

\(=abc\left[\dfrac{5}{2}.\left(a^2+b^2+c^2\right)+\dfrac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right]=\)

\(=abc.\left[\dfrac{5}{2}.\left(a^2+b^2+c^2\right)+\dfrac{\left(a+b+c\right)^2}{2}\right]=\)

\(=abc.\dfrac{5}{2}.\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\dfrac{a^5+b^5+c^5}{5}=abc.\dfrac{a^2+b^2+c^2}{2}\left(đpcm\right)\)

3 tháng 5 2015

Vế trái = a2. (a3 - 1) + 3 - 3a + 2 = a2.[(a-1). (a2 + a + 1)] - 3.(a -1) +2 = (a-1). (a4 + a3 + a2 -3) + 2

= (a-1).[(a4 -1) + (a3 -1) + (a2 -1)] +2

= (a-1). [(a-1).(a+1).(a2 +1) + (a -1).(a2 + a + 1) + (a-1).(a+1)] +2

= (a-1)2. [(a+1).(a2 +1) + (a2 + a + 1) + (a+1)] + 2

Vì a \(\ge\) 0 => (a+1).(a2 +1) + (a2 + a + 1) + (a+1) > 0 ; (a-1)2 \(\ge\) 0

=> Vế trái \(\ge\) 2 > 0

=> ĐPCM