Tìm \(x,y\in N\) biết \(2x^2+3^y=3026\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
bài 2:
a)đặt n²-n+13=a²
=> 4n²-4n+52=4a²
=> (4n²-4n+1) +51=4a²
=>(2n-1)²+51=4a²
=>4a²-(2n-1)²=51
=>(2a-2n+1)(2a+2n-1)=51
vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)
=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3
với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12
với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)
KL:n=-12
TH1: y = 0
\(x^2+3^0=3026\)
=> \(x^2=3025\)
=> \(x=\pm55\)
TH2: \(y\ge1\)
Có: \(x^2=3026-3^y\)
+) \(VP=3026-3^y=2+3024-3^y\)chia 3 dư 2 (1)
+) \(VT=x^2\)chia 3 dư 0 hoặc 1
x = 3k => \(x^2\)chia hết cho 3 nghĩa là chia 3 dư 0
x = 3k + 1 => \(x^2=9k^2+6k+1\) chia 3 dư 1
\(x=3k+2\Rightarrow x^2=9k^2+12k+4=9k^2+12k+3+1\) chia 3 dư 1
Vậy \(VT=x^2\)chia 3 dư 0 hoặc 1 (2)
Từ (1) , (2) => \(VT\ne VP\)
=> \(y\ge1\)loại
Vậy y = 0 và \(x=\pm55\).
với y =0 =>x2+1=3026 <=> x=55
với y\(\ge1\) thì 3016 \(⋮̸\)3 mà 3y \(⋮3\)nên x2\(⋮̸\)3 nên có dạng x=3k+1 hoặc x=3k+2 (k\(\in N\))
xét x=3k+1 => (3k+1)2+3y=301=26 <=> 9k2+6k+1+3y=3016 <=> 9k2+6k+3y=3025
9k2+6k+3y\(⋮\)3 mà 3015\(⋮̸\)3 nên phương trình vô nghiệm
tương tự x=3k+2 ta cũng có pt vo nghiệm
vậy x=55;y=1 là nghiệm duy nhất
*y=0=>x^2+1=3026=>x^2=3025 mà x là số tự nhiên=> x=55
*y>0 => 3^y chia hết cho 3 mà 3026 chia 3 dư 2=> x^2 chia 3 dư 2 (vô lý)
Vậy x=55,y=0
Bạn có thể đi cm Số chính phương(x^2) chia 3 du 0 hoặc 1
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
Có: \(3026\equiv2\left(mod3\right)\)
Do đó: \(x^2\equiv2\left(mod3\right)\)
Mặt khác số chính phương chia 3 không dư 2
Vậy không có x,y thỏa .....
xét y=0 ta có x^2+1=3026
=>x=55
xét y>0 ta có như bạn lê nhật khôi
ta có: 2x2 = 3026 => x2 = 3026:2 = 1513 => 1513 hoặc -1513
chắc thế thui
hình như x,y ko có số nào thỏa mãn hay sao ý