K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có: 2x2 = 3026 => x2 = 3026:2 = 1513 => 1513 hoặc -1513

chắc thế thui

hình như x,y ko có số nào thỏa mãn hay sao ý

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

5 tháng 10 2019

TH1: y = 0

\(x^2+3^0=3026\)

=> \(x^2=3025\)

=> \(x=\pm55\)

TH2: \(y\ge1\)

Có: \(x^2=3026-3^y\) 

+) \(VP=3026-3^y=2+3024-3^y\)chia 3 dư 2 (1) 

+) \(VT=x^2\)chia 3 dư 0 hoặc 1

x = 3k  => \(x^2\)chia hết cho 3 nghĩa là chia 3 dư 0

x = 3k + 1 => \(x^2=9k^2+6k+1\) chia 3 dư 1

\(x=3k+2\Rightarrow x^2=9k^2+12k+4=9k^2+12k+3+1\) chia 3 dư 1

Vậy  \(VT=x^2\)chia 3 dư 0 hoặc 1 (2)

Từ (1) , (2) => \(VT\ne VP\)

=> \(y\ge1\)loại

Vậy y = 0 và \(x=\pm55\).

5 tháng 10 2019

với y =0 =>x2+1=3026 <=> x=55

với y\(\ge1\) thì 3016 \(⋮̸\)3 mà 3y \(⋮3\)nên x2\(⋮̸\)3 nên có dạng x=3k+1 hoặc x=3k+2  (k\(\in N\))

xét x=3k+1 => (3k+1)2+3y=301=26 <=> 9k2+6k+1+3y=3016 <=> 9k2+6k+3y=3025

9k2+6k+3y\(⋮\)3 mà 3015\(⋮̸\)3 nên phương trình vô nghiệm

tương tự x=3k+2 ta cũng có pt vo nghiệm

vậy x=55;y=1 là nghiệm duy nhất

15 tháng 3 2019

*y=0=>x^2+1=3026=>x^2=3025 mà x là số tự nhiên=> x=55

*y>0 => 3^y chia hết cho 3 mà 3026 chia 3 dư 2=> x^2 chia 3 dư 2 (vô lý)

Vậy x=55,y=0

 Bạn có thể đi cm Số chính phương(x^2) chia 3 du 0 hoặc 1

15 tháng 3 2019

vì 3y chia hết cho 3

mà 3026 chia 3 dư 2 => x2 chia 3 dư 2, mà ko có số chính phương nào chia 3 dư 2 

=> ko có giá trị x,y t/m 

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

23 tháng 10 2019

Có: \(3026\equiv2\left(mod3\right)\)

Do đó: \(x^2\equiv2\left(mod3\right)\)

Mặt khác số chính phương chia 3 không dư 2

Vậy không có x,y thỏa .....

xét y=0 ta có x^2+1=3026

                  =>x=55

xét y>0 ta có như bạn lê nhật khôi

29 tháng 10 2016

bài thứ 3

(2x-1)=(1,29)=> x=(1,15)

(y-3)=(29,1)=>y=(32,4)