K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Khi x = - 1; y = 1 thì xy = (-1).1= -1

Ta có: xy – x2y2 + x3y3 – x4y4 + x5y5 – x6.y6

= xy – (xy)2 + (xy)3 – (xy)4 + (xy)5 – (xy)6

= -1 – (-1)2 + (-1)3 – (-1)4 + (-1)5 - (-1)6

= -1 – 1 + (-1) – 1 + (-1) – 1

= - 6

Chọn đáp án D

3 tháng 8 2021

D đúng nha!

5 tháng 4 2017

Ta có : \(x2-y2=2\Rightarrow\left(x-y\right)2=2\Rightarrow x-y=1\)

\(A=2\left(x6-y6\right)-6\left(x4+y4\right)\)

\(\Rightarrow2\left[\left(x-y\right)6\right]-6\left[\left(x+y\right)4\right]\)

\(x-y=1\Rightarrow A=2.6-6\left[\left(x+y\right)4\right]\)

\(\Rightarrow A=6\left[2-\left(x+y\right)4\right]\)

\(\Rightarrow A=6\left[2-4x-4y\right]=6\left[2-4\left(x-y\right)\right]\)

\(\Rightarrow A=6\left[2-4.1\right]=6.\left[2-4\right]=6.\left(-2\right)=-12\)

Vậy A = -12

Bài 3: 

\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x^2-9\right)\left(x^2-1\right)+15\)

\(=x^4-10x^2+9+15\)

\(=x^4-10x^2+24\)

\(=\left(x^2-4\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

 

27 tháng 10 2023

a, \(8^3yz+12^2yz+6xyz+yz\)

\(=512yz+144yz+6xyz+yz\)

\(=yz\left(512+14+6x+1\right)\)

\(=yz\left(527+6x\right)\)

$---$

b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)

\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)

\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)

\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)

$---$

c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)

\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)

$---$

d, \(x^6+x^4+x^2y^2+y^4-y^6\)

\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)

$Toru$

25 tháng 8 2021

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)

a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

a: A=x^5-32

Khi x=3 thì A=3^5-32=243-32=211

b: B=x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+x^7-x^6+x^5-x^4+x^3-x^2+x-1

=x^8-1

=2^8-1=255

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)

21 tháng 5 2019

21 tháng 2 2018

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)

b:\(B=x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=125^2-2\cdot2500\)

=10625

c:  \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)