giải pt
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Rightarrow\frac{x-2+5x+5}{\left(x+1\right)\left(2-x\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Rightarrow x-2+5x+5=15\)
\(\Rightarrow6x+3=15\Leftrightarrow6x=12\Leftrightarrow x=2\)
Vậy x = 2
\(\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)
đkxđ : x khác cộng trừ 2
=> x2+2x-5x+10=x2+1
<=> x2+2x-5x-x2=-10+1
<=> -3x=-9
<=> x=3
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
pt đầu \(\Leftrightarrow x+1+\frac{1}{x+1}+x+7+\frac{7}{x+7}=x+3+\frac{3}{x+3}+x+5+\frac{5}{x+5}\)
\(\Rightarrow\frac{1}{x+1}+\frac{7}{x+7}=\frac{3}{x+3}+\frac{5}{x+5}\\ \Rightarrow\frac{8x+14}{x^2+8x+7}=\frac{8x+30}{x^2+8x+15}\)
\(\Leftrightarrow\left(4x+7\right)\left(x^2+8x+15\right)=\left(4x+15\right)\left(x^2+8x+7\right)\)
Đặt a=4x+7
b=x2 +8x+7
như vậy ta được pt mới có dạng \(a\left(b+8\right)=b\left(a+8\right)\Leftrightarrow ab+8a=ab+8b\Rightarrow a=b\)
hay\(4x+7=x^2+8x+7\Rightarrow x^2+4x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Bài 1:
a, \(\frac{1}{x+1}+\frac{2}{x-1}=\frac{1+x^2}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{1+x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\) x - 1 + 2(x + 1) = 1 + x2
\(\Leftrightarrow\) x - 1 + 2x + 2 - 1 - x2 = 0
\(\Leftrightarrow\) -x2 + 3x = 0
\(\Leftrightarrow\) x(3 - x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐKXĐ\right)\\x=3\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy S = {0; 3}
b, \(\frac{x-2}{x+2}-\frac{x}{x-2}=\frac{8}{x^2-4}\) (ĐKXĐ: x \(\ne\) \(\pm\) 2)
\(\Leftrightarrow\) \(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) (x - 2)2 - x(x + 2) = 8
\(\Leftrightarrow\) (x - 2)2 - x(x + 2) - 8 = 0
\(\Leftrightarrow\) x2 - 4x + 4 - x2 - 2x - 8 = 0
\(\Leftrightarrow\) -6x - 4 = 0
\(\Leftrightarrow\) x = \(\frac{-2}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{-2}{3}\)}
c, \(\frac{1}{x}\) + \(\frac{2}{x-3}\) = \(\frac{1-5x}{x^2-3x}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 3)
\(\Leftrightarrow\) \(\frac{x-3}{x\left(x-3\right)}+\frac{2x}{x\left(x-3\right)}=\frac{1-5x}{x\left(x-3\right)}\)
\(\Rightarrow\) x - 3 + 2x = 1 - 5x
\(\Leftrightarrow\) 3x - 3 = 1 - 5x
\(\Leftrightarrow\) 3x + 5x = 1 + 3
\(\Leftrightarrow\) 8x = 4
\(\Leftrightarrow\) x = \(\frac{1}{2}\) (TMĐKXĐ)
Vậy S = {\(\frac{1}{2}\)}
Bài 2:
a, \(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}=\frac{-5}{x-2}+\frac{12+x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\) \(\frac{x-2}{\left(x+2\right)\left(x-2\right)}=\frac{-5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12+x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) x - 2 = -5(x + 2) + 12 + x
\(\Leftrightarrow\) x - 2 = -5x - 10 + 12 + x
\(\Leftrightarrow\) x - 2 = -4x + 2
\(\Leftrightarrow\) x + 4x = 2 + 2
\(\Leftrightarrow\) 5x = 4
\(\Leftrightarrow\) x = \(\frac{4}{5}\)
Vậy S = {\(\frac{4}{5}\)}
Chúc bn học tốt!! (Phần b hình như không có gì thì phải)
a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)
(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)
\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)
\(-x^3-x^2+9x+9=0\)
\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)
\(\left(x+1\right)\left(9-x^2\right)\)=0
(x+1)(3-x)(3+x)=0
*x+1=0 =>x=-1
*3-x=0=>x=3
*3+x=0=>x=-3
\(ĐKXĐ:x\ne-1\)
Đặt: \(u=\frac{5x-x^2}{x+1}\) , \(v=\frac{x^2+5}{x+1}\)
\(\Rightarrow u+v=5\)
Từ pt đã cho,ta có hệ:
\(\hept{\begin{cases}u+v=5\\uv=-14\end{cases}}\)
Vậy: u và v là nghiệm của pt: \(t^2-5t-14=0\)
Giải pt trên ,ta đc: \(t_1=-2,t_2=7\)
Hay: u=-2 , v=7 hoặc u=7 , v= -2
Thế vào phép đặt u và v ta đc:
\(x=\frac{7\pm\sqrt{57}}{2}\)
=.= hok tốt!!
hơi dài
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Đặt \(\frac{x^2+1}{x}=a\Rightarrow\frac{x}{x^2+1}=\frac{1}{a}\)
ĐKXĐ : x khác 0
Theo bài ta có
\(a+\frac{1}{a}=\frac{5}{2}\)
\(\Leftrightarrow2a^2+2=5a\)
\(\Leftrightarrow2a^2-5a+2=0\)
\(\Leftrightarrow\left(a-2\right)\left(2a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2\\a=\frac{1}{2}\end{cases}}\)
+) Với a = 2
Khi đó ta có
\(\frac{x^2+1}{x}=2\)
\(\Leftrightarrow x^2+1=2x\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
+) Với \(a=\frac{1}{2}\)
Khi đó ta có
\(\frac{x^2+1}{x}=\frac{1}{2}\)
\(\Leftrightarrow2x^2+2=x\)
\(\Leftrightarrow2x^2-x=-2\)
\(\Leftrightarrow2\left(x^2-\frac{x}{2}\right)=-2\)
\(\Leftrightarrow2\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}\right)=-2+\frac{1}{8}\)
\(\Leftrightarrow2\left(x-\frac{1}{4}\right)^2=-\frac{15}{8}\) ( vô lí )
Vậy x = 1 là nghiệm của phương trình
\(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)ĐK : \(x\ne0;x^2+1>0\forall x\)
\(\Leftrightarrow\frac{\left(x^2+1\right)^2+x^2}{x\left(x^2+1\right)}=\frac{5}{2}\)
Theo HĐT : \(\left(a-b\right)^2=a^2-2ab+b^2\Rightarrow a^2+b^2=2ab\)
\(\Leftrightarrow\frac{2x\left(x^2+1\right)}{x\left(x^2+1\right)}=\frac{5}{2}\Leftrightarrow2\ne\frac{5}{2}\)
Vậy phương trình vô nghiệm