K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2016

a) Theo đề bài ta có : 36 = ab( a + b ) . Suy ra a + b là Ư(36). Vì a, b là chữ số, hơn nữa a khác 0, do đó 1 bé hơn hoặc bằng a+b bé hơn hoặc bằng 18, nên a+b nhận các giá trị là : 1; 2; 3; 6; 10; 12; 18.

    Với a+b =1 hoặc a+b=2 thì ab=36 hoặc ab=18 nhưng khi đó a+b =9 trái với điều kiện a+b=1 hoặc a+b=2

   Với a+b=3 thì ab=12, khi đó thỏa mãn đề bài.

   Với a+b=4,a+b=6,a+b=9, a+b=12 hoặc a+b=18 thì ab đều là số có một chữ số, vô lí !

   Vậy có duy nhất a=1,b=2 là thỏa mãn đề bài

Ôi ! tớ chỉ giải mỗi phần a) thôi. Còn phần b) thì giải tương tự và kết quả tớ tính ra là :a=1, b=2, c=5

nhé :)

3 tháng 4 2016

a) Ta có 36 = ab x ( a+ b )

36 = 3x12 = 2 x 18 = 36 x 1 

Ta có số cần tìm là 12

b) Ta có 1000 = abc x ( a + b + c )

1000 = 125 x 8 = 250 x 4 = 500 x 2 = 200 x 5 

Vậy số cần tìm là 125

Tớ nghĩ bài này là của lớp 5 bởi vì tớ lớp 5 mà. Tích nha

27 tháng 5 2015

Ta có:

\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)

\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)

Ta lại có:

\(\frac{1}{2!}=\frac{1}{1.2}\)

\(\frac{1}{3!}<\frac{1}{2.3}\)

\(...\)

\(\frac{1}{2001!}<\frac{1}{2000.2001}\)

\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}\)

\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2000}-\frac{1}{2001}\)

\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2001}=\frac{2000}{2001}<1\)

\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1\)

\(\Rightarrow\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\right)+2<1+2\)

\(\Rightarrow1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<3\)